

Version 11.0

For Power Electronics & Motor control

User's Guide

Powersim Inc. Mywayプラス株式会社

PSIM® User's Guide

PSIM Version 11.0

Release 1

February 2017

© Copyright 2001-2017 Powersim Inc., Myway Plus Corporation

All rights reserved. No part of this manual of the software may be photocopied or reproduced in any form or by any means without the written permission of Powersim Inc. and Myway Plus Corporation.

Disclaimer

Powersim Inc. (Powersim) and Myway Plus Corporation (Myway) make no representation or warranty with respect to the adequacy or accuracy of this documentation or the software which it describes. In no event will Powersim and Myway or their direct or indirect supplies be liable for any damages whatsoever including, but not limited to, direct, indirect, incidental, or consequential damages of any character including, without limitation, loss of business profits, data, business information, or any and all other commercial damages or losses, or for any damages in excess of the list price for the license to the software and documentation.

お問い合わせ先

Myway プラス株式会社 〒222-0022 神奈川県横浜市西区花咲町 6-145 横浜花咲ビル Tel 045-548-8836, Fax 045-548-8832 Email: <u>sales@myway.co.jp</u> URL: <u>https://www.myway.co.jp/</u>

目次

第1章	概要	9
1.1	はじめに	9
1.2	回路構成	11
1.3	動作環境	11
1.4	PSIM のインストール	12
1.5	シミュレーション例	12
1.6	シミュレーション制御	12
1.7	素子のパラメータの仕様および形式	16
第2章	PSIM による回路図入力	18
2.1	PSIM 環境	18
2.2	回路図モデルの作成	21
2.3	ファイルメニュー	22
2.4	編集メニュー	23
2.5	表示メニュー	24
2.6	デザインスイートメニュー	25
2.7	サブ回路メニュー	25
2.7.	.1 サブ回路作成 ーメイン回路上での作業	26
2.7	.2 サブ回路作成 -サブ回路内での作業	27
2.7.	.3 メイン回路でのサブ回路の接続	28
2.7	.4 サブ回路のその他の機能	28
2	2.7.4.1 メイン回路からサブ回路への変数値の受け渡し	28
2	2.7.4.2 サブ回路シンボルの編集	29
2	2.7.4.3 サブ回路を PSIM の素子リストに追加する	30
2.8	素子メニュー	30
2.9	シミュレーションの実行	31
2.9	.1 シミュレートメニュー	31
2.9	0.2 コマンドラインオプションでシミュレーションの実行	34
2.10	オプションメニュー	35
2.10	0.1 設定オプション	35
2.10	0.2 パス設定オプション	37
2.10	0.3 ツールバーとキーボードのカスタマイズ	38
2.11	ユーティリティメニュー	41
2.12	PSIM ライブラリの管理	41
2.12	2.1 二次イメージの作成	43
2.12	2.2 ライブラリへ新しいサブ回路要素の追加	44
2.12	2.3 ライフラリヘ DLL 素子の追加	45
2.13	シンボルライブラリの作成	46
第3章	SIMVIEW による波形処理	49
3.1	ファイルメニュー	49
3.2	編集メニュー	50
33	軸メニュー	50
5.5		

3.5 測	定 メニュー	55
3.6 分	がが メニュー	55
3.7 表	示メニュー	56
3.8 オ	・プションメニュー	57
3.9 ラ	ベルメニュー	58
3.10	設定 メニュー	58
3.11	データの書き出し	59
第4章	電気回路素子	60
4.1 抵	抗-インダクタ-キャパシタ(Resistor-Inductor-Capacitor Branches)	60
4.1.1	抵抗 (Individual Resistor)	60
4.1.2	インダクタ (Individual Inductor)	61
4.1.3	キャパシタ(Individual and Electrolytic Capacitors)	61
4.1.4	複合 RLC ブランチ(Combined R-L-C Branch)	
4.1.5	三相抵抗、インダクタ、キャパシタ、複合ブランチ(Three-Phase R, L, C	;, and
Combi	ination Branches)	
4.1.6	三相 AC ケーブル(3-Phase AC Cable)	63
4.1.7	レオスタット(Rheostat)	
4.1.8	可飽和リアクトル(Saturable Inductor)	
4.1.9	相互結合インダクタ(Coupled Inductors)	
4.1.10	非線形素子(Nonlinear Elements)	
4.2 ス	イッチ(Switching Devices)	67
4.2.1	ダイオード(Diode)	
4.2.2	発光ダイオード(LED)	
4.2.3	ツェナーダイオード、ダイアック(Zener Diode and DIAC)	
4.2.4	サイリスタ・トライアック(Thyristor and TRIAC)	
4.2.5	トランジスタ(Iransistor)	72
4.2.6		
4.2.7	絶縁ゲートバイボーラトランジスタ(IGBT)	
4.2.8	速阻止 IGB1(IGB1-RB)	
4.2.9		
4.2.10	双方回入イッナ(Bi-Directional Switches)	
4.2.11	線形入イッナ(Linear Switches)	
4.2.12	スイッナ・ケート信号ノロック(Switch Gating Block)	
4.2.13	単相スイッナモシュール(Single-Phase Switch Modules)	
4.Z.14	ニ相スイッナモシュール(Inree-Phase Switch Modules)	
4.3 发	"庄岙(Transformers)	83
4.3.1	理想愛住器(Ideal Italisionner)	83 02
4.3.2	単相変圧器(Single-Phase Transformers)	83
4.3.3 121	二阳冬江谷	
4.J.4 ЛЛ I II	— 旧冬江砧(当郎和)(IIIICC-FIIase IIdiiSiUIIIEI Willi SaluialiUII)	/ o وو
т.т 1122 ///1	メンマホ(maynetic Lientenio) 巻き線(Winding)	00 20
4.4.1 11/2	って家(Willowy) 漏れ磁車経路(Leakage Flux Path)	00 20
4.4.2 /// 2	///// / km 木//エロ(Leanaye Flux Fall) エアギャップ(Air Gan)	ຍອ ຊດ
4.4.J	エテュ ドラン(All Gap) 線形コア(Linear Core)	09 00
4.4.4		

4.4.5	可飽和コア(Saturable Core)			
4.5 その他素子 (Other Elements)				
4.5.1	オペアンプ(Operational Amplifier)			
4.5.1.1	理想オペアンプ(Ideal Operational Amplifier)			
4.5.1.2	2 非線形オペアンプ(Non-Ideal Operational Amplifier)			
4.5.2	TL431 シャントレギュレータ(TL431 Shunt Regulator)			
4.5.3	フォトカプラ(Opto-Coupler)			
4.5.4	dv/dt ブロック(dv/dt Block)			
4.5.5	リレー(Relays)			
4.6 - -	-夕駆動モジュール(Motor Drive Module)			
4.6.1	機械システムでの「基準方向」(Reference Direction)			
4.6.2	誘導機(Induction Machines)			
4.6.3	飽和付かご型誘導機(Induction Machine with Saturation)	101		
4.6.4	直流機 (DC Machine)	102		
4.6.5	ブラシレス直流機(Brushless DC Machine)	104		
4.6.6	他励式同期(Svnchronous Machine with External Excitation)	109		
4.6.7	永久磁石同期機 (Permanent Magnet Synchronous Machine)			
4.6.8	飽和付永久磁石同期機 (Permanent Magnet Synchronous Machine with S	aturation)		
	114	,		
4.6.9	スイッチトリラクタンスモータ (Switched Reluctance Machine)			
4.6.10	非線形スイッチトリラクタンスモータ (Nonlinear Switched Reluctance	3		
Machine	e) 117			
4.6.11	·/ モータ制御ブロック (Motor Control Blocks)			
4.6.11	.1 最大トルク制御 (Maximum-Torque-Per-Ampere Control)	119		
4.6.11	.2 弱め磁束制御 (Field Weakening Control)	120		
4.7 Mag	Coupler モジュール (MagCoupler Module)	122		
4.7.1	MagCoupler-DL ブロック (MagCoupler-DL Block)	123		
4.7.2	MagCoupler ブロック (MagCoupler Block)	125		
4.8 Mao	aCoupler-RT モジュール	129		
4.9 機柄	域素子及びセンサ (Mechanical Elements and Sensors)	133		
4.9.1	機械負荷 (Mechanical Loads)			
4.9.1.1	定トルク負荷 (Constant-Torque Load)			
4.9.1.2	2 定電力負荷 (Constant-Power Load)			
4.9.1.3	定速度自荷 (Constant-Speed Load)	134		
4.9.1.4	一般負荷 (General-Type Load)	134		
4.9.1.5	が 外部コントロール 自荷 (Externally-Controlled Load)	135		
4.9.2	ギアボックス (Gear Box)			
4.9.3	メカニカルカップリングブロック(Mechanical Coupling Block)			
4.9.4	機械系一電気系インターフェースブロック (Mechanical-Electrical Interfac	ce Block)		
	136			
4,9.5	 速度・トルクセンサ (Speed/Torque Sensors)	138		
4.9.6	位置センサ (Position Sensors)			
4961	アブソリュートエンコーダ (Absolute Encoder)	140		
4962	? インクリメンタルエンコーダ (Incremental Encoder)	140		
4963	3 レゾルバ (Resolver)	141		
4964	ホールセンサ (Hall Effect Sensor)	141		
7.0.0.7				

第1章 概要

4.10	熱モジュール (Thermal Module)	142				
4.10.1	4.10.1 ダイオードサーマルモデル (Diode Thermal Model) 143					
4.10.1	.1 データベースのダイオードデバイス (Diode Device in Database)	143				
4.10.1	.2 ダイオード損失計算 (Diode Loss Calculation)	144				
4.10.2	IGBT サーマルモデル(IGBT Thermal Model)	145				
4.10.2.1 データベースの IGBT デバイス (IGBT Device in Database)						
4.10.2		147				
4.10.3	IGBT-RB サーマルモデル(IGBT-RB Thermal Model)	151				
4.10.3	.1 データベースの IGBT-RB デバイス (IGBT-RB Device in Database)	151				
4.10.3	.2 IGBT-RB 損失計算 (IGBT-RB Loss Calculation)	151				
4.10.4	MOSFET サーマルモデル (MOSFET Thermal Model)	153				
4.10.4	.1 データベースの MOSFET デバイス (MOSFET Device in Database)	153				
4.10.4	.2 MOSFET 損失計算 (MOSFET Loss Calculation)	155				
4.10.5	インダクタサーマルモジュール (Inductor Thermal Module)	157				
4.10.5	.1 データベースのインダクタ (Inductor in Database)	157				
4.10.5	.2 インダクタ損失計算 (Inductor Loss Calculation)	157				
4.10.6	デバイスデータベースエディタ (Device Database Editor)	158				
4.10.7	データベースにデバイスを追加 (Adding a Switching Device to Database)	160				
4.11	再生可能エネルギーモジュール (Renewable Energy Models)	167				
4.11.1	太陽電池モジュール (Solar Modules)	167				
4.11.1	.1 太陽電池モジュール 機能モデル (Solar Module – Functional Model)	167				
4.11.1	.2 太陽電池モジュール - 物理モデル (Solar Module – Physical Model)	168				
4.11.1	.3 太陽電池モジュール - 結晶シリコン型/薄膜型(Solar Module - cSi and Thin-Film					
Model	s) 169					
4.11.2	風車 (Wind Turbine)	172				
4.11.3	リチウムイオンバッテリモデル (Lithium-Ion Battery Model)	174				
4.11.4	ルックアップテーブルを用いたバッテリモデル(Battery (Lookup Table) Mo 175	del)				
4.11.5	SOC のルックアップテーブルを用いたバッテリモデル(Battery (Lookup Table	е				
SOC) M	lodel)	177				
4.11.6	Qのルックアップテーブルを用いたバッテリモデル(Battery (Lookup Table Q	2)				
Model)	179					
4.11.7	ウルトラキャパシタモデル (Ultracapacitor Model)	182				
第5章	制御回路素子	183				
51 伝道	室関数ブロック (Transfer Vunction Blocks)	183				
511	比例制御器 (Proportional Controller)	184				
5.1.2	着分器 (Integrator)					
5.1.3	微分器 (Differentiator)	185				
5.1.4	比例看分(PI)制御器 (Proportional-Integral Controller)					
5.1.5	単極制御器 (Single-Pole Controller)	186				
5.1.6	二極比例積分(PI)制御器 (Modified PI controller)	187				
5.1.7	Type-3 制御器(Type-3 Controller)	187				
5.1.8	5.1.8 組み込みフィルタ・ブロック (Built-in Filter Blocks)					
5.2 数值	直演算関数ブロック (Computational Function Blocks)	190				
5.2.1	加算器(Summer)	190				

5.2.2	乗算器と除算器 (Multiplier and Divider)	. 190		
5.2.3	平方根ブロック(Square-Root Block)	. 191		
5.2.4	指数/累乗/対数ブロック (Exponential/ Power/ Logarithmic Function Blocks)			
5.2.5	二乗平均平方根ブロック (Root-Mean-Square Block)	. 191		
5.2.6	絶対値ブロック、符号関数ブロック (Absolute and Sign Function Blocks)	. 192		
5.2.7	三角関数ブロック (Trigonometric Functions)	. 192		
5.2.8	高速フーリエ変換ブロック (FFT Fourier Transform Block)	. 192		
5.2.9	最大/最小機能ブロック (Maximum/Minimum Function Block)	. 193		
5.3 その)他の関数ブロック (Other Function Blocks)	. 195		
5.3.1	比較器(Comparator)	. 195		
5.3.2	リミッタ(Limiters)	. 195		
5.3.3	微分(dv/dt)リミッタ (Gradient (dv/dt) Limiter)	. 195		
5.3.4	台形および方形波ブロック (Trapezoidal and Square Blocks)	. 196		
5.3.5	サンプル・ホールド・ブロック (Sample/Hold Block)	. 196		
5.3.6	丸め関数ブロック (Round-Off Block)	. 197		
5.3.7	時間遅れブロック(Time Delay blocks)	. 198		
5.3.8	マルチプレクサ (Multiplexer)	. 199		
5.3.9	高調波歪みブロック (THD Block)	200		
5.3.10	空間ベクトル PWM ブロック(Space Vector PWM)	. 201		
5.3.11	空間ベクトル PWM ブロック(alpha/beta) (Space Vector PWM(alpha/beta)).	201		
5.4 デジ	ジタル素子 (Logic Components)	202		
5.4.1	論理ゲート (Logic Gates)	202		
5.4.2	セット・リセット・フリップフロップ (Set-Reset Flip-Flop)	203		
5.4.3	J-K フリップフロップ (J-K Flip-Flop)	. 204		
5.4.4	Dフリップフロップ (D Flip-Flops)	. 204		
5.4.5	単安定マルチバイブレータ (Monostable Multivibrator)	205		
5.4.6	パルス幅カウンタ (Pulse Width Counter)	205		
5.4.7	Up/Down カウンタ(Up/Down Counter)	205		
5.4.8	A/D および D/A 変換器(A/D and D/A Converters)	206		
5.5 デジ	シタル制御モジュール (Digital Control Module)	207		
5.5.1	モータコントロールブロック(Motor Control Blocks)	207		
5.5.1.1	ランプ制御(Ramp Control)	. 207		
5.5.1.2	ランプ生成器(Ramp Generator)	. 207		
5.5.1.3	すべりモードオブザーバ(PMSM)(Sliding Mode Observer (PMSM))	. 208		
5.5.1.4	速度演算器(Speed Calculator)	. 208		
5.5.1.5	5 エンコーダ	. 209		
5.5.2	ゼロ次ホールド (Zero-Order Hold)	209		
5.5.3	z 領域伝達関数ブロック (z-Domain Transfer Function Block)	. 210		
5.5.3.1	積分器(離散型)(Integrator)	. 212		
5.5.3.2	微分器(離散型)(Differentiator)	. 213		
5.5.3.3	デジタル PI コントローラ(Digital PI Controller)	. 213		
5.5.3.4	リセット付きデジタル PID 制御器(Digital PID Controller with Reset)	. 214		
5.5.3.5	デジタルフィルタ (Digital Filters)	. 215		
5.5.4	単位遅れブロック(Unit Delay)	. 218		
5.5.5	離散化ブロック (Quantization Blocks)	. 218		
5.5.6	循環バッファ (Circular Buffers)	220		

5.5.7	畳み込みブロック (Convolution Block)	221
5.5.8	メモリ読み出しブロック (Memory Read Block)	221
5.5.9	データ配列 (Data Array)	222
5.5.10	スタック (Stack)	222
5.5.11	多重サンプリングシステム (Multi-Rate Sampling System)	222
5.6 Sim	Coupler モジュール (SimCoupler Module)	223
5.6.1	PSIMと Simulink での設定 (Set-up in PSIM and Simulink)	223
5.6.2	Simulink における Solver Type とタイムステップの設定(Solver Type an	d Time
Step Se	lection in Simulink)	225
5.6.3	PSIM から Simulink へのパラメータの受け渡し(Passing Parameters from	m
Simulink	to PSIM)	227
5.7 Cos	siMate リンク (CosiMate Links)	227
5.8 Des	sign Suite ブロック (Design Suite Blocks)	228
5.8.1	トルク制御(PMSM) (Torque Control(PMSM))	228
5.8.2	ダイナミックトルクリミット制御(PMSM) (Dynamic Torque Limit	
Control(PMSM))	229
5.8.3	ダイナミックトルクリミット制御(非線形 PMSM)	230
5.8.4	電圧制御(PMSM) (Voltage Control(PMSM))	
5.8.5	DC-DC 充電制御 (DC-DC Charging Control)	232
5.8.6	DC-DC 放電制御 (DC-DC Discharging Control)	233
5.8.7	DC-DC 回生制御 (DC-DC Regeneration Control)	233
笛6音	その他の素子	235
3) 0 +		200
6.1 スイ	′ッチ制御器 (Switch Controllers)	235
6.1 スイ 6.1.1	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller)	235 235
6.1 スイ 6.1.1 6.1.2	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller)	
6.1 スイ 6.1.1 6.1.2 6.1.3	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller)	
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller) E・電流センサ (Sensors)	
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller) E・電流センサ (Sensors) コーブとメータ、スコープ (Probes, Meters, and Scopes)	235 235 236 236 238 238 238
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller) E・電流センサ (Sensors) コーブとメータ、スコープ (Probes, Meters, and Scopes) プローブとメータ (Probes and Meters)	235 235 236 236 238 238 238 238
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller) E・電流センサ (Sensors) コーブとメータ、スコープ (Probes, Meters, and Scopes) プローブとメータ (Probes and Meters) 電圧/電流スコープ (Voltage/Current Scopes)	235 235 236 236 238 238 238 238 238 240
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller) E・電流センサ (Sensors) コーブとメータ、スコープ (Probes, Meters, and Scopes) プローブとメータ (Probes and Meters) 電圧/電流スコープ (Voltage/Current Scopes) マンクションブロック (Function Blocks)	235 236 236 238 238 238 238 238 238 240 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ 6.4.1	イッチ制御器 (Switch Controllers) オンオフ制御器 (On-Off Switch Controller) 点弧角制御器(Alpha Controller) PWM ルックアップテーブル制御器 (PWM Lookup Table Controller) E・電流センサ (Sensors) コーブとメータ、スコープ (Probes, Meters, and Scopes) プローブとメータ (Probes and Meters) 電圧/電流スコープ (Voltage/Current Scopes) ンクションブロック (Function Blocks)	235 235 236 236 238 238 238 238 238 240 242 242 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ 6.4.1 6.4.2	 イッチ制御器 (Switch Controllers)	235 236 236 238 238 238 238 238 240 242 242 242 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ 6.4.1 6.4.2 6.4.2.1	 イッチ制御器 (Switch Controllers)	235 236 236 238 238 238 238 238 240 242 242 242 242 242 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ 6.4.1 6.4.2 6.4.21 6.4.2.1	 イッチ制御器 (Switch Controllers)	235 235 236 236 238 238 238 238 240 242 242 242 242 242 242 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4.1 6.4.2 6.4.2 6.4.2.3 6.4.2.3	 イッチ制御器 (Switch Controllers)	235 236 236 238 238 238 238 238 240 242 242 242 242 242 242 242 242 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 フロ 6.4.1 6.4.2 6.4.2.1 6.4.2.3 6.4.2.3 6.4.2.3 6.4.2.4 6.4.2.4 6.4.2.4	 イッチ制御器 (Switch Controllers)	235 236 236 238 238 238 238 238 240 242 242 242 242 242 242 242 242 243 244 246
6.1 スト 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 フロ 6.4.1 6.4.2 6.4.2.2 6.4.2.2 6.4.2.4 6.4.3 6.4.3	 イッチ制御器 (Switch Controllers)	235 235 236 238 238 238 238 240 242 242 242 242 242 242 242 244 244
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4.1 6.4.2 6.4.2 6.4.2.3 6.4.2.3 6.4.3 6.4.4 6.4.4	 イッチ制御器 (Switch Controllers)	235 235 236 238 238 238 238 238 240 242 242 242 242 242 242 242 242 242
6.1 スト 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4.1 6.4.2 6.4.2 6.4.2.3 6.4.2.4 6.4.3 6.4.4 6.4.5	 イッチ制御器 (Switch Controllers)	235 236 236 238 238 238 238 240 242 242 242 242 242 242 243 244 244 246 246 247 247 249
6.1 スト $6.1.1$ $6.1.2$ $6.1.3$ 6.2 電圧 6.3 プロ $6.3.1$ $6.3.2$ $6.4.2$ $6.4.2.2$ $6.4.2.2$ $6.4.2.2$ $6.4.2.2$ $6.4.3$ $6.4.4$ $6.4.5$ $6.4.6$ $6.4.6$ $6.4.6$	 イッチ制御器 (Switch Controllers)	235 235 236 238 238 238 238 240 242 242 242 242 242 242 244 244 246 246
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ 6.4.1 6.4.2 6.4.2.2 6.4.2.3 6.4.2.3 6.4.2.4 6.4.2.3 6.4.2.4 6.4.2.3 6.4.2.4 6.4.2.5 6.4.5 6.4.6 6.4.7	 イッチ制御器 (Switch Controllers)	235 235 236 238 238 238 238 238 240 242 242 242 242 242 242 242 242 242
6.1 スイ 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 ファ 6.4.1 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2 6.4.2	 イッチ制御器 (Switch Controllers)	235 235 236 238 238 238 238 240 242 242 242 242 242 242 242 243 244 246 246 246 247 247 247 249 252 253 253
6.1 スト 6.1.1 6.1.2 6.1.3 6.2 電圧 6.3 プロ 6.3.1 6.3.2 6.4 フロ 6.4.1 6.4.2 6.4.2.2 6.4.2 6.4.2.4 6.4.2.4 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.8 6.5 IC =	 イッチ制御器 (Switch Controllers)	235 235 236 238 238 238 238 240 242 242 242 242 242 242 243 244 246 246 246 247 247 247 247 247 247 249 252 253 254 254

6.5.2	ドライバ IC (Driver IC)	
6.5.3	555 タイマ (555 Timer)	
6.6 初期	值 (Initial Values)	
6.7 パラ	メータファイル (Parameter File)	
6.8 周波	资数特性解析(AC Analysis)	
6.8.1	AC スイープ (AC Sweep)	
6.8.2	AC スイープ複数正弦波 (AC Sweep Multi-Sine)	
6.9 パラ	ッメータのスイープ (Parameter Sweep)	
第7章	電圧源 · 電流源	
7.1 定数	र (Constant)	
7.2 時間	(Time)	
7.3 グラ	ウンド (Ground)	
7.4 電圧	- 源と電流源	
7.4.1	直流電源 (DC Source)	
7.4.2	正弦波電源(Sinusoidal Source)	
7.4.3	方形波電源(Square-Wave Source)	
7.4.4	三角波電源/のこぎり波電源 (Triangular/Sawtooth Sources)	
7.4.5	ステップ電源 (Step Sources)	
7.4.6	区分線形電源(Piecewise Linear Source)	
7.4.7	ランダム電源 (Random Source)	
7.4.8	数式関数電源 (Math Function Source)	
7.4.9	制御付き電圧源・電流源 (Voltage/Current-Controlled Sources)	
7.4.10	非線形電圧制御電源 (Nonlinear Voltage-Controlled Sources)	
第8章	エラー及び全般に関する注意	276
8.1 全船	とに関する注意	
8.1.1	タイムステップ	
8.1.2	論理回路の伝搬遅れ	
8.1.3	パワー回路と制御回路のインターフェース	
8.1.4	FFT による高調波解析	
8.2 ディ	、ッグ	
8.3 エラ	ラーおよび警告メッセージ	

第1章 概要

1.1 はじめに

PSIM¹ はパワーエレクトロニクスおよびモータ制御のために開発されたシミュレーション・パッケージ です。 PSIM は高速シミュレーション、使いやすいユーザインターフェース、波形解析機能などにより、 パワーエレクトロニクスの解析、制御系設計、モータドライブの研究などに優れたシミュレーション環境 を提供します。

[⊃] SIM には本体(Professional)の他に、以下のアドオン・オプションが用意されています。			
Motor Drive Module	モータドライブシステムの解析のためにモータモデルと機械負荷モデ		
	ルが用意されています。		
Digital Control Module	ゼロ次ホールドなどの離散要素、z-領域伝達関数、離散化ブロックを提		
	供し、デジタル制御系を解析できます。		
SimCoupler Module	SimCoupler モジュールは PSIM と MATLAB/Simulink ² を同時に使った		
	シミュレーションを行うためのインターフェースを提供します。		
Thermal Module	半導体デバイスの損失を計算する機能を提供します。		
Renewable Energy Module	再生可能エネルギーデバイスのシミュレーション用の太陽電池、風車、		
	バッテリモデルを提供します。		
SPICE ⁸ Module	SPICE シミュレーションのための SPICE エンジンは CoolCAD エレク		
_	トロニクス LLC の CoolSPICE により提供されています。		
SimCoder ³ Module	自動コード生成機能を提供します。		
F2833x Target	TI F2833x シリーズ DSP 用の自動コード生成機能を提供します。		
F2803x Target	TI F2803x シリーズ DSP 用の自動コード生成機能を提供します。		
F2802x Target	TI F2802x シリーズ DSP 用の自動コード生成機能を提供します。		
F2806x Target	TI F2806x シリーズ DSP 用の自動コード生成機能を提供します。		
PIL Module	PIL シミュレーションのための PSIM と TI の DSP ハードウェアボード		
	との間のインターフェースです。TI の InstaSPIN モータ制御アルゴリ		
	ズムをサポートするための機能ブロックを含みます。		
MagCoupler Module	PSIM と電磁気分野の解析ソフトウェアである JMAG ⁴ と連成シミュレ		
	ーションするためのインターフェースを提供します。		
MagCoupler-RT Module	PSIM と JMAG-RT ⁴ のデータファイル間を結合します。		
ModCoupler [®] Modules	PSIM と ModelSim ⁶ 間の運成シミュレーションのためのインターフェ		
	ースを提供します。インターフェースには、二つのバージョンがありま		
	す。一つは、VHDLコードをサポートする ModCoupler-VHDL です。も		
	う一つは、Verilog コードをサポートする ModCoupler-Verilog です。		
Motor Control Design Suite	誘導電動機および線形/非線形 PMSM のためのテンプレートを提供し		
	ます。		
HEV Design Suite	ハイフリット電気自動車のハリートレインシステムテサインのための		
Sure and Charl	テンノレートを提供します。		
Smartutri	制御ルーノ設計用のソフトワェアです。		
	アナロクとテンタル両万の制御ルーフの設計が可能です。		

さらに、PSIM は、連成シミュレーションプラットフォーム CosiMate⁷ とリンクすることが可能です。 CosiMate は、以下の様々なソフトウェアをサポートしています。Matlab/Simulink、ModelSim、 Saber(Synopsys 製)、Easy5、Adams(MSC ソフトウェア製)、Inventor(Autodesk 製)、AMESim(LMS 製)、 GT-Power(Gamma テクノロジー製)など。 CosiMate とリンクすることで、上記のソフトウェアと連成シ ミュレーションを行うことができます。

- 1. PSIM および SIMVIEW は、Powersim 社の登録商標です。また、これらは Powersim 社の製品であり著作権で保護されています。
- 2. Matlab および Simulink は、MathWorks 社の登録商標です。
- 3. SimCoder は、Powersim 社の登録商標です。Powersim 社の製品であり著作権で保護されています。
- 4. JMAG および JMAG-RT は、JSOL 社の製品であり著作権で保護されています。
- 5. ModCoupler および SmartCtrl は、マドリード・カルロス3世大学で開発されたものであり、著作権で保護されています。
- 6. ModelSim は、Mentor Graphics 社の登録商標です。
- 7. CosiMate は、ChiasTek 社の製品であり、著作権で保護されています。
- 8. CoolSPICE は CoolCADElectronicsLLC の製品であり著作権で保護されています。

CosiMate に関する詳細な情報は、<u>www.chiastek.com</u>を参照してください。

また、PSIM は制御ループ設計用のソフトウェア SmartCtrl⁵ともリンクすることができます。SmartCtrl は、特に電力コンバータアプリケーション用にデザインされています。SmartCtrl に関する詳細な情報は、 SmartCtrl のユーザーズガイドを参照してください。

豊富な製品ラインアップにより、Powersimはデザインからシミュレーション、ハードウェアの実装に至るまでの完全なプラットフォームを提供します。全体の環境を下図に示します。

PSIM パッケージは4つのソフトウェアから構成されています。PSIM 回路図エディタ、2つのシミュレーションエンジン(PSIM と SPICE),そして波形表示/処理ソフトの SIMVIEW です。下図にシミュレーション環境を示します。

本マニュアルは、PSIMとアドオン・モジュールについて解説していますが、以下のアドオン・モジュー ルについては対象外であり、それぞれ個別のマニュアルを参照してください。

- SimCoder モジュールと関連するハードウェアの使用については、「SimCoder User Manual」で解説 しています。
- SPICE モジュールについては、「SPICE User Manual」で解説しています。
- PIL モジュールについては、「Tutorial Prosessor-In-the-Loop Simulation.pdf」で解説しています。
- HEV Design Suite については、「Tutorial HEV Design Suite」で解説しています。
- Motor Control Design Suite については、「Tutorial Motor Control Design Suite」で解説しています。

本マニュアルの構成を以下に示します。

- 第1章 回路の構成法、必要な動作環境、インストール手順、および素子のパラメータの仕様 について解説します。
- 第2章 PSIM環境および回路の作成方法について解説します。

第3章 SIMVIEW によるシミュレーション結果の表示および解析方法について解説します。

- 第4章~第7章 PSIM ライブラリの素子について解説します。
- 第8章 エラー・警告メッセージについてまとめてあります。

1.2 回路構成

PSIMの回路はパワー回路、制御回路、センサ、スイッチ制御の4つのブロックで構成されます。 下図に各ブロックの相互間系を示します。

パワー回路はスイッチング素子、RLC回路、変圧器、および相互結合インダクタなどから構成されます。 制御回路は s 領域あるいは z 領域の伝達関数のブロック線図で表現されます。また、制御回路では、アナ ログ素子(乗算器や除算器など、非線形素子を含む)およびデジタル素子(論理ゲートおよびフリップフロッ プ)を使用することができます。センサはパワー回路の電圧・電流値を計測します。これらの計測値を制御 回路ブロックに渡すこともできます。制御回路で生成されたゲート制御信号はスイッチ制御ブロックを経 て、パワー回路のスイッチング素子に送られます。

1.3 動作環境

・ハードウェア:1GB以上のメモリを搭載した PC/AT 互換機

OS: Microsoft Windows 7 / 8 /10

1.4 PSIM のインストール

PSIM のインストール手順は別冊 PSIM Install Manual を参照ください。 PSIM フォルダには、以下ファイルが格納されます。

PSIM.exe SIMView.exe PcdEditor.exe	PSIM 回路図エディタ PSIM 波形処理プログラム デバイスデータベースエディタ		
SetSimPath.exe SimCoupler モジュールのパス設定プログラム			
PSIM で使用するファイ *. psimsch	ルフォーマットは以下の通りです。 PSIM 回路図ファイル		
*.psimpjt	PSIM プロジェクトファイル		
*.lib	PSIM ライブラリファイル		
*.fra	PSIM AC スイープ解析出力ファイル(テキスト)		
*.dev	デバイスデータベースファイル		

- *.txt テキスト形式のシミュレーション結果出力ファイル
- *.smv 専用(バイナリ)形式のシミュレーション結果出力ファイル

PSIM 回路図ファイルの拡張子は PSIM8.0 までは.sch でしたが、PSIM9.0 以降は他のソフトウェアとの 混同を避けるため.psimsch に変更されています。

1.5 シミュレーション例

シミュレーションの実行例として、サンプル回路"buck.psimsch"を実行する場合の手順を説明します。 "buck.psimsch"ファイルは、フォルダ"exsamples/dc-dc"に保存されています。

- PSIM を起動します。
- ファイル ≫ 開く から、ファイル"buck.psimsch"を開きます。
- **シミュレート ≫ シミュレーション実行**を選択し、シミュレーションを実行します。シミュレーション 結果は"buck.smv"に保存されます。
- オプションメニューで SIMVIEW 自動実行 がチェックされている場合は、SIMVIEW が自動的に起動 します。SIMVIEW で表示する波形を選択してください。
 SIMVIEW 自動実行 のオプションがチェックされていない場合は、シミュレート ≫ SIMVIEW 実行を 選択し、SIMVIEW を起動してください。

1.6 シミュレーション制御

シミュレート制御の素子では、シミュレーションパラメータ(タイムステップ、合計時間、プリントタイム等)を設定します。

シミュレート ≫ シミュレーション制御を選択すると、シミュレート制御の素子を配置することができます。シミュレーション制御素子は、下図のような時計のイメージです。

シミュレーション制御の機能は、4 つタブに分類されています。

[PSIM]	PSIM の過渡解析の基本的なパラメータを設定します。
[SPICE]	SPICE シミュレーションのための解析タイプとパラメータを設定します。
	詳細は、SPICE ユーザーマニュアルを参照してください。
[SimCoder]	SimCoder機能のためのハードウェアターゲットを設定します。
	詳細は、SimCoder ユーザーマニュアルを参照してください。
[カラー]	シミュレーション制御の素子イメージの色を変更します。

[PSIM]タブ

タイムステップ	シミュレーションのタイムステップです。単位は「秒」です。
総時間	シミュレーションを終了する時間を設定します。単位は「秒」です。
フリーラン	フリーランチェックボックスがチェックされていない場合、総時間で設定した
	時間まで計算が進んだところで、シミュレーションが終了します。
	チェックされている場合、フリーランモードでシミュレーションが実行され、停
	止操作をするまでシミュレーションを継続します。
	フリーランモードでは、電圧/電流スコープを使用し、シミュレーション中に電
	圧や電流の値を観測することができます。
表示タイム	シミュレーション結果の出力ファイルへの保存を始める時刻です。この時刻よ
	り前のシミュレーション結果は保存されません。
表示ステップ	結果保存の周期です。Print Step = 1 のとき、すべてのデータが出力ファイルに
	保存されます。Print Step = 10とすると、10回に1度だけ結果が保存されます。
	この設定により、出力ファイルの大きさを制限することができます。
ロードフラグ	LOAD 機能のフラグです。Load Flag = 1 のとき、前回のシミュレーション結果
	をファイル(拡張子.ssf)から初期状態として読み込みます。
保存グラフ	│SAVE 機能のフラグです。Save Flag = 1 のとき、現在のシミュレーションが終
	了した時点の数値をファイル(拡張子.ssf)に保存します。

PSIMでは、シミュレーションの実行中にタイムステップを変更することはできません。正確な結果を得るために、タイムステップを適切に選ぶ必要があります。適切なタイムステップは、スイッチの動作時間、 パルス・波形の幅、過渡現象の時定数、などにより決定されます。タイムステップは少なくともこれらの 現象のうち最も短いものよりも一桁小さく設定することを推奨します。

補間機能により、スイッチングのタイミングをより正確に計算することができます。この機能を使用す ることで、スイッチ時刻とシミュレーションのタイムステップが同期していないことによる誤差を低減す ることができます。大きいタイムステップでシミュレーションを実行した場合でも精度よい結果を得るこ とができます。

タイムステップの最大値は、回路構成から PSIM が自動的に計算します。シミュレーションではこれと ユーザが設定したタイムステップとを比較し、小さい方の値を採用します。

SAVE および LOAD 機能を使うことにより、回路の電圧・電流その他の値をひとつのシミュレーション が終了した時点で保存し、次回のシミュレーションを実行するときに初期状態として読み込むことができ ます。この機能により、長時間のシミュレーションをいくつかの短いシミュレーションに分け、タイムス テップとパラメータを変えて実行できます。素子の変数およびパラメータはシミュレーションごとに設定 を変えることができますが、回路構成は同じでなければなりません。

[SPICE]タブ

SPICE 解析には過渡、AC、DCの3種類があります。各々のシミュレーションパラメータは次の通りです。詳細につきましては SPICE ユーザーマニュアルを参照してください。

過渡解析の場合

パラメータ	以下のパラメ-	-タが定義され	いています。
	初期条件(UIC)を使用する		これをチェックすると"初期条件使用"オプション が.tran コマンドに追加されます。
	時間ステッフ	Ŷ	計算とプリント又はプロットの時間ステップで単位は秒 です。空白(未定義)でも問題ありません。
	最大ステップ		SPICE で使用する最大のステップサイズで単位は秒で す。
			デフォルトとしてはプログラムでは Tstep(時間ステッ プ)か(Tend-Tstart)/50((開始時間一終了時間)/50)のうち 小さい方の値が選択されます。 Tstepよりも小さい計算間隔を保証したい場合に Tmax は役にたちます。
	始まる時間		単位は秒です。過渡解析は時間0から始まります。安定 状態に到達したら回路は解析されますが設定した始まる 時間Tstartまでは出力値は保存されません。
	終了時間		終了時間 Tend で単位は秒です。
統合法	SPICE シミュ	レーションで依	吏用できる三つの統合法があります。
	台形	台形法	
	変形台形	変形台形法	
	ギア	ギア法	
	次数	数値積分法の 6 を設定でき)次数です。台形法の場合は1か2、ギア法の場合は2から ます。

AC 解析の場合

パラメータ	以下のパラメ-	ータが定義されています。
	開始周波数	開始周波数で単位は Hz です。
	終了周波数	終了周波数で単位は Hz です。
	Dec	1 桁あたりの解析ポイント数。もしオクターブか線形変数を使用した いのであれば SPICE 指令ブロックに解析コマンドを書いて使用するこ とができます。

DC 解析の場合

パラメータ	ソース1がデ	フォルトで使用されます。ソース2を使う場合、チェックボックスをチェ	
	ックすれば設定が有効になります。以下のパラメータが定義されています。		
	電圧/電流	ソースが電圧か電流かの設定	
	開始	開始値(単位:V か A)	
	ステップ	間隔 (単位:V か A)	
	終了	終了値(単位:V か A)	

SPICE シミュレーションのための他のパラメータは以下になります。

動作点	チェックボッ? ンはインダク? ることが可能	フスをチェックして有効にした場合、SPICE シミュレーショ タショート、キャパシタオープンの回路の DC 動作点を決め です。
ステップ実行オプション	 チェックボックスをチェックして有効にした場合 SPICE シミュレーションはパラメータスイープを実行します。パラメータスイープの定義は次ようになります。 	
	パラメータ	スイープするパラメータの名前
	開始	開始値
	ステップ	刻み間隔
	終了	終了値

許容誤差オプション	有効のチェックボックスをチェックして有効にした場合 SPICE シミュレ ーションの許容誤差を変更できます。チェックしない場合はデフォルト値 が使用されます。許容誤差は次のようになります。			
	RELTOL	相対許容誤差		
	TRTOL	過渡解析時の許容誤差		
	VNTOL	絶対電圧許容誤差		
	ABSTOL	絶対電流許容誤差		
	CHGTOL	絶対電荷許容誤差		

[SimCoder]タブ

h Harl	Oim Oradon たは田レズコードた白動化ポオフィ ゆのいードウーフク		
ダーケット	SINICOUCH を12000 C コートを日期生成9 るにののハートワェアター ビットを記字レエノがさい		
	ケットを設定してくたさい。		
	F2833x TI F2833x ハードウェアターゲット		
	F2802x TI F2802x ハードウェアターゲット		
	<i>F2803x</i> TI F2803x ハードウェアターゲット		
	F2806x TI F2806x ハードウェアターゲット		
Memory Map Option	F2833x および F2830x ハードウェアターゲットの場合に、コンパイラ		
	のメモリマップを設定してください。		
	RAM Debug		
	RAM Release		
	Flash Release		
	Flash RAM Release		
	(詳細は「SimCoder ユーザーズガイド」を参照してください)		
	PE-Expert3 の場合は、以下の2種類から選択してください。		
	PE-View9		
	PE-View8		
CPU //-939	しPUハーションを選択してくたさい。 - F20222 F20225 F20224 F20222		
	F2033X F20333, F20334, F20332 E2803y E28035 E28034 E28033 E28032 E28031 E28030		
	F_{2802x} F_{28027} F_{28026} F_{28023} F_{28022} F_{28021} F_{28020}		
	F280200		
	F2806x F28069, F28068, F28067, F28066, F28065, F28064.		
	F28063, F28062		
Insta SPIN が有効	 DSP で InstaSPIN チェックボックスが有効となっている場合(例えば		
	E_{28069M} の場合)このボックスをチェックして InstaSPINI を有効にす		
デフォルトのデータ型	000000000000000000000000000000000000		
	完されている場合にデフォルトのデータ型を設定します		
	E^{2803v} ターゲットの提合には 教教 $O^{1}O^{2}$ O^{20} から選択す		
	「2000メダーブジャの場合には、歪奴、低い、低之、…、低のがう医バチームニレができます		
	ることかできまり。 ハードウェアターゲットが None 担合には、運動小粉、軟粉、IO4		
	$ \cap \cap \cap \cap \cap \cap \cap \cap \cap $		
	192、…、1900から広、より。 因テ小数占統囲絵杏にチェックが入っている埋合 計管結甲が記字		
	回たす数示戦四波且にフェフラルへつている物ロ、可昇帕木が改たし た筎囲内に入っているか SimCodor がエテックします		
DMC ライブラリバージョン	/ ニ===四mm=ハラしいのからInnoouci かナエックします。 SimCodor で体田する TI のデジタリエニター判知/DMC)ニノゴニリの		
	Sincoder で使用する ロップファルモーター制弾(Divic) ノイノブリの バージョンを設定します。サポートされているバージョンは V/A 0		
	ハーンヨンで設定します。 ケホードでれているハーションは V4.0、		
计图	v + 1, v + 0 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2		
/ T.1 /	ハリノィールドにヘリしにりつていのナキヘドは SIIILOUdel にようし生 ポキャセクラードの生産にコノントトレイクロキャナナ		
	戍されに し コー トの 元 與 に コ チ ノ ト と し し 垣 加 され よ タ 。		

1.7 素子のパラメータの仕様および形式

下図に示すように、素子のパラメータを設定するためのダイアログは、[パラメータ]、[その他]、[カラー] の3つのタブに分類される機能を提供します。

Re	esistor : R1		×	Resistor : R1		8	Resistor : R1	×
F	Parameters Other Info Co	olor		Parameters Other	info Color		Parameters Other Info Color	
	Resistor		Help	Resistor		Help	Resistor	Help
			Display			Display		
	Name	R1	v	Name	R1			
	Model Level	Level 1	•	Power Rating	1/4W			
	Resistance	120		Manufacturer	Company ABC			
	Current Flag	0	<u> </u>	Part No.	01-23456			
]	U	

[パラメータ]タブで指定した素子のパラメータはシミュレーションに反映されます。

[その他]タブに入力された情報はシミュレーションに反映されませんが、表示 ≫ 素子リストで表示され るリストに表示されます。[その他]タブは、主に報告書作成用の情報として、素子の定格、製造元、パーツ 番号など保存してご使用ください。素子の色を[カラー]タブで変更できます。

[パラメータ]のタブでは、数値または数式で値を指定することができます。たとえば抵抗は次のいずれかの方法で指定できます。

12.5 12.5k 12.5Ohm 12.5kOhm 25./2.Ohm R1 + R2 R1*0.5+(Vo+0.7)lo

ここで、R1、 R2、 Vo、 lo はパラメータファイル(6.7 参照)か、もしくはこの抵抗がサブ回路にある場合(2.7 参照)はメイン回路にて定義します。

また、PSIM では 10 の累乗も指定できます。以下の単位をサポートしています。

G	10 ⁹
М	10 ⁶
k または K	10 ³
m	10 ⁻³
u	10 ⁻⁶
n	10 ⁻⁹
р	10 ⁻¹²

PSIM で使用できる演算子は以下の通りです。数式にはカッコを使うこともできます。また、大文字と小 文字の区別はありません。

+	加算	
-	減算	
*	乗算	
1	除算	
^	べき乗	例:2^3=2*2*2
SQRT	平方根	
SIN	正弦(サイン)	
COS	余弦(コサイン)	

ASIN	逆正弦(アークサイ 、)	
ACOS	ン) 逆余弦(アークコサ イン)	
TAN ATAN	- ン) 正接(タンジェント) 逆正接(アークタン ジェント)	
ATAN2	逆正接(アークタン ジェント)	$-\pi \leq \text{ATAN2} \leq \pi$
SINH	ンコンコン 双曲線正弦関数 (ハ イパボリックサイ ン)	
COSH		
EXP	指数	例:EXP(x) = e ^x
LOG	自然対数	LOG(x) = ln(x)
LOG10	常用対数	(基底 10)
ABS	絶対値	
SIGN	符号	例: SIGN(1.2) = 1 SIGN(-1.2) = -1 SIGN(0) = 0

PSIM で使える数学定数として pi(円周率)があります。

pi	円周率	3.14159265359

第2章 PSIMによる回路図入力

PSIM では、直感的で使い易い対話型インターフェースにより、シミュレーションモデルの回路図を作成 することができます。PSIM Ver.10 以降では、回路図の作成からシミュレーション結果までをプロジェク トとして管理します。ユーザインターフェースは、必要な機能を統合した構成になっており、回路図の作 成、シミュレーションの実行、回路図の修正などを1つのウィンドウ内で実行することができます。

2.1 PSIM 環境

代表的な PSIM 環境の画面を下図に示します。この図では、誘導モータドライブ回路と降圧型 DCDC コンバータの 2 種類の回路モデルが開かれています。

初期設定では、『**メニューバー**』と『**ツールバー**』はウィンドウの上部に表示されます。 一般的な回路素子は、『**素子ツールバー**』としてウィンドウ下部に表示されます。 プロジェクトの構成は、ウィンドウの左側に『**プロジェクトビュー**』として表示されます。

『**プロジェクトビュー**』では、回路図やシミュレーション結果のグラフなどの関連するファイルがツリー 構成で表示されます。『**プロジェクトビュー**』では、以下の項目がツリー構造で表示されます。

- プロジェクト名 通常は、トップレベルの回路図の名称がプロジェクト名として使用されます。
- **ドキュメント** 回路図の説明、パラメータ、ルックアップテーブルなどの関連するファイルが保存 されます。
- **回路図**回路図です。トップレベルの回路図およびサブ回路が含まれます。
- **グラフ** 回路図内に配置した全てのプローブのリストが表示されます。

以下は、プロジェクトビューでの降圧コンバータの一例を示しています。

これは降圧コンバータのプロジェクトの例です。

Study が 1 つ含まれていて、主回路は「buck - main.psimsch」、サブ回路は「sub.psimsch」です。シ ミュレーションの波形は I(S1.L1)と Vo の 2 つです。

シミュレーション実行後、プロジェクトビューで波形名をダブルクリックすると SIMVIEW に読み込ま せることができます。波形を回路図にドラッグして埋め込むことができます。例えば、上図では Vo の波 形を示しています。

プロジェクトには複数の Study を含むことができます。例えば1つは降圧コンバータ回路、もう1つは 負荷フィルタやスイッチング周波数が異なる降圧コンバータ回路を含むことができます。

既存の Study を元に新しい Study を作成する場合は「buck - main」の Study を右クリックし、

「Create Study copy(スタディのコピーを作成)」をクリックしてください。

以下に示すダイアログウィンドウが表示され、新しい Study の名前と、サブ回路のコピーを作成するか どうかを選択します。

この例では、「buck - main1」と呼ばれる新しい Study の作成とサブ回路のコピーを作成します。 確認後、新しい Study は、以下のように作成されます。

コピーして作られたファイル「buck - main1.psimsch」と「sub.psimsch」は新しく作られた Study の「buck - main1」フォルダの中に作られます。

同じプロジェクトの中の別の Study に既存の回路図ファイルを追加するには、「buck - main」のプロジェクトを右クリックして「Add Study(スタディの追加)」を選択します。 プロジェクトを保存するにはプロジェクトを右クリックして「Save Project(プロジェクトを保存)」を選択します。

2.2 回路図モデルの作成

PSIM は、回路図の作成のために以下の機能を提供します。

回路素子の選択 素子の選択にはいくつかの方法があります。

- ・プルダウンメニューからの選択
- **素子**メニューから、サブメニューを選択し、使用する素子を選択してください。 ・『素子ツールバー』から選択
- RやCなど一般的な素子で使用頻度の高いものは、『素子ツールバー』から選 択することができます。『素子ツールバー』は初期設定ではウィンドウ下部に 表示されます。
- ・ライブラリブラウザで検索
 - ライブラリブラウザでは、名称から回路素子を検索することができます。
 - ライブラリブラウザを起動するには、
- **表示 ≫ ライブラリブラウザ**を選択してください。

配置	メニューから素子を選択すると、素子のシンボルが画面上に現れ、マウスととも
	に移動します。素子の位置を決めるにはマウスを左クリックしてください。
素子の選択	回路図上に配置した素子を選択するためには、素子をクリックしてください。
	回路の一部を選択する場合は、マウスの左ボタンを押したまま、選択する領域を
	長方形で囲むようにマウスをドラッグしてください。
	選択された素子または回路ブロックの周囲には長方形が表示されます。
回転	素子を回路図モデル内に配置する前は、素子を選択後にマウスの右ボタンをクリ
	ックすることで素子の向きを回転させることができます。
	回路図上に配置された素子を回転させる場合は、素子を選択して 編集 ≫ 回転 を選
	択するか、ツールバー上の「」をクリックしてください。
配線	2つのノードを接続するためには、 編集 ≫ ワイヤを追加 を選択するか、ツールバ
	ー上の をクリックしてください。ペンのシンボルが表示されます。ワイヤを
	描くには、マウスの左ボタンを押し続けてドラッグしてください。
	視認性の観点から接続されていないノードは〇で表され、接続されたノードは●
	で表示されます。
ラベル	複数のノードが同一のラベルに接続している場合、それらのノードはワイヤによ
•	り接続した場合と同様に扱われます。ラベルを使うことにより、クロスワイヤリ
	ング(混線)が減少し、回路図のレイアウトが改善されます。
	ラベルのテキスト表示は移動可能です。テキストを選択するには、ラベルを左ク
	リックーア $<$ Tab>キーを押してください
	ラベルを追加するためにけ 毎年 > ラベルを追加 を選択してください
パニィータシウ	ノベルを迫加するためには、 欄米 // ノベルを追加 を送扒してくたてい。 事子のパニメニカた弧ウオスためには、事子たがゴルクリックレイ『ダイマログ
ハラメージ設定	糸丁のハファータを設定りるにのには、糸丁をダブルクリックして『ダイブロク
	リイントリ』を衣示してくたさい。』ダイアロクワイントワ』内で該当するハフメ
	ータに値を人力して <enter>キーを押すか OK をクリックしてください。</enter>

移動素子や回路ブロックを移動する場合は、素子、回路ブロックを選択して、マウスの左ボタンを押し続けながらドラッグしてください。

表示のスクロール マウスの右ボタンを押しながらドラッグすると、画面をスクロールすることができます。

2.3 ファイルメニュー

ファイルメニューの機能について説明します。

新しい回路	新しい回路図を作成します。
新しいワークシート	事前に定義されたワークシートのサイズで新しい回路図を作成します。
回路を開く	すでに作成した回路図ファイルを開きます。
サンプルを開く	PSIM に入っているサンプル回路を開きます。
ワークシートのサイズを変	ワークシートのサイズを変更します。
更	
新しいプロジェクト	新しい PSIM プロジェクトを作成します。
プロジェクトを開く	すでに作成した PSIM プロジェクトを開きます。
プロジェクトを保存	現在の PSIM プロジェクトを保存します。
回路を閉じる	回路図ファイルを閉じます。
すべてを閉じる	すべての回路図ファイルを閉じます。
回路を保存	現在の回路図ファイルを保存します。
名前を付けて保存	現在の回路図ファイルを別の名前で保存します。
すべてを保存	すべての回路図ファイルを保存します。
パスワードを付けて保存	パスワードで回路図ファイルを保存します。パスワードで保護されたファ
	イルを利用してシミュレーションは可能ですが、回路図の内容を見るため
	に正しいパスワードを入力する必要があります。
	回路図の詳細を公開せずに、シミュレーションの内容を共有する場合に、
	パスワード保護機能をご使用ください。
パッケージファイルに保存	回路図とすべての関連ファイルを 1 個のパッケージに保存するには、こ
	の機能を選択してください。複数のサブ回路含む回路図を第三者に送信す
	る必要ある場合などにご使用ください。
古いバージョンで保存	過去のバージョン(8.0-10.0)に対応した形式で保存します。
	過去のバージョンに存在しない素子を使用すると、これらの素子は省略さ
	れます。ご注意ください。
印刷	回路図を印刷します。印刷はスクリーンに表示されている通りに印刷され
	ます。回路図をズームインもしくはズームアウトしている場合、それに応
	じて印刷されますのでご注意ください。
印刷プレビュー	フリントアウトをフレビューします。
選択エリア印刷	回路図の選択した部分だけ印刷します。
選択エリア印刷プレビュー	回路図の選択した部分だけプレビューします。
印刷ベージ設定	印刷ページの位置を調整と印刷ページの説明を設定します。
フリンタ設定	フリンタを設定します。
終了	PSIM 回路図ブログラムを終了します。

2.4 編集メニュー

編集メニューの機能について説明します。

取り消し	以前の変更を取消すことができます。
やり直し	以前の変更をやり直すことができます。
カット	選択した素子または回路ブロックを切り取ります。切り取った素子または
	回路ブロックは、回路図内に貼り付けることができます。
	素子または回路ブロックを削除するには、該当部分を選択し、 <delete>キ</delete>
	ーを押してください。
コピー	選択した素子や回路のブロックをコピーします。
貼り付け	コピーもしくはカットした素子や回路ブロックを貼りつけます。
マッチした素子を選択	仕様に合致した素子を選択します。
すべてを選択	回路全体を選択できます。
	回路の一部をマウスの左ボタンクリックにより選択して、ドラッグしてく
	ださい。
クリップボードにコピー	回路図イメージを別のソフトウェアへ貼り付けることができます。メタフ
	ァイルフォーマット、カラービットマップ、白黒 ビットマップの3種類
	のフォーマットを選ぶことができます。
描画	表示を分かり易くする為に回路図にイメージを追加する場合はこれを選
	択してください。ライン、長円、長方形、半円、ビットマップイメージお
	よび波形のイメージを使用することができます。
	ビットマップイメージを描くときには、表示したい部分をマウスで左クリ
	ックしながらドラッグし定義します。その後、ファイル選択画面が表示さ
	れますので、描きたいビットマップイメージのファイルを選択してくださ
	い。波形を描くときには、表示したい部分をマウスでクリックしながらド
	ラッグし定義します。ダブルクリックすると波形選択画面が表示され、表
	示される波形を選べます。
すべてのテキストフォント	開いている PSIM ファイル内の全てのテキストのフォントを変更します。
を変更	
すべての素子文字フォント	開いている PSIM ファイル内の全ての素子に関連付けられたテキストの
を変更	フォントを変更します。
テキストを追加	任意の文字列を回路図上に配置することができます。ダイアログ・ボック
	スに文字列を入力し、マウスを左クリックして位置を決めてください。
ワイヤを追加	2つのノードを接続するためのワイヤを追加します。 ワイヤを追加する際
	には、カーソルがペンの形状に変化します。
ラベルを追加	ラベルを回路図に配置します。複数のノードが同一のラベルに接続してい
	る場合、それらは結合されてワイヤによる接続と同等のものになります。
	ノベルを使うことにより、クロスフィギリンク(ル縁)が減少し、回時因の
	レイプワトか改善されます。
電流スコーノの追加/削除	電流ノフク付さ素子に電流人コーノを追加もしくは削除します。
	本機能が選ばれた後、電流スコーノを表示するために要素の上にクリック
	してノフンナ電流名を選んでくたさい。
	すでに表示されている電流スコーフを削除するために、チェックマークか
由仁叶本教《本一/小本一	ついたノフンナ電流名を選択してくたさい。
天 行時変数の表示/非表示	ンミュレーンヨン中に素子のハフメータを変更する万法の一つです。これ
	を選択彼、素子をクリックするとその素子の可変ハフメータの値が現われ
	ます。この値をタフルクリックして現れる人力フィールドに書き込むこと
	で素ナハフメータの変更かできます。

無効	素子または回路の一部を「無効状態」にします。無効状態の素子または回路はグレー表示になり、シミュレーションの際に考慮されません。素子または回路の一部を一時的に除外してシミュレーションすることができます。
有効	無効になっている素子または回路を「有効」にします。
回転	要素または回路の一部を時計回りに 90°回転させるため、Rotate をクリッ
	クします。
左石反転	素子を左右反転します。
上下反転	素子を上下反転します。
検索	素子を検索することができます。
次を検索	直前の検索操作を繰り返し、条件が合致する次の素子が選択されます。
ファイルから検索	指定した複数のファイルに対し、検索を行うことができます。
ライブラリ編集	PSIM イメージライブラリを編集します。詳細は 2.12 を参照してくださ
	し、 。
イメージエディタ	イメージエディタを起動します。詳細は 2.12 を参照してください。
中止	編集モードを選択モードに切替えます。

2.5 表示メニュー

表示メニューの機能について説明	1.ます.
アプリケーション表示	PSIMウィンドウの表示スタイルを選択します。
スタイル	タイル表示とタブ表示の切り替えも「アプリケーション表示スタイル」
	から行うことができます。
ステータスバー	ステータスバーの表示/非表示を切替えます。
ツールバー	ツールバーの表示/非表示を切替えます。
素子ツールバー	素子ツールバーの表示/非表示を切替えます。
ライブラリブラウザ	ライブラリブラウザを起動します。
プロジェクト表示	プロジェクトビューの表示/非表示を切り替えます。
拡大	回路図を拡大します。
縮小	回路図を縮小します。
ページに合わせる	回路全体をスクリーンに合うようにズームを調節します。
選択エリアを拡大	選択した領域を拡大表示します。
	回路図表示の拡大率を指定します。
素子リスト	回路図の部品リストを作成します。
素子カワント	回路図の素子をカウントします。電圧・電流プローブ及び計測器は素子
	カウントに含まれていません。
SPICE モデルリスト	SPICE モデルパスにある.model ステートメントで定義されたすべての
	SPICE モデルの一覧を表示します。
SPICE サブサーキットリスト	SPICE モデルパスにある.subckt 文で定義されたすべての SPICE モデ
	ルの一覧を表示します。
電圧/電流表示	オプション中の「シミュレーション中のすべての電圧と電流を保存」([オ
	プション]→[設定]→[一般])が有効に設定されている場合に、任意のノー
	ドの電圧とブランチの電流を表示することができます。
	電圧/電流を表示するためには、シミュレーションの実行が必要です。
差動電圧表示	オプション中の「シミュレーション中のすべての電圧と電流を保存」([オ
	プション]→[設定]→[一般])が有効に設定されている場合に、任意の2つ
	のノード間の電圧を表示することができます。
	差動電圧を表示するためには、シミュレーションの実行が必要です。

 ノード名設定
 オプション中の「シミュレーション中のすべての電圧と電流を保存」([オ プション]→[設定]→[一般])が有効に設定されている場合に、任意のノー ドに名称を設定することができます。
 リフレッシュ
 画面表示をリフレッシュします。

2.6 デザインスイートメニュー

デザインスイートメニューの機能について説明します。

デザインスイート機能を使用することで、テンプレートを基に回路モデルを自動で生成することができ ます。テンプレートは2種類用意されています。

パラメータファイルを更新	デザインスイート機能で生成された回路図のパラメータを更新します。
デザインファイルを表示	デザインテンプレートを表示します。
パラメータを表示	デザインスイート機能で生成されたモデルのパラメータを表示します。
HEV Design Suite	HEV 用のデザインテンプレートを実行します。
	以下の4つのデザインテンプレートが提供されています。
	・HEV パワートレインシステム
	・PHEV(プラグイン・ハイブリッド電気自動車)パワートレインシステム
	・HEV ジェネレーター
	・HEV トラクションモータ
	各テンプレートには線形・非線形のバージョンがあります。
Motor Control Design	モータ制御用のデザインテンプレートを実行します。
Suite	以下の5つのデザインテンプレートが提供されています。
	・PMSM(IPM)ドライブ
	・PMSM(IPM)ドライブ(非線形)
	・PMSM(SPM)ドライブ
	・PMSM ドライブ
	・誘導モータドライブ
	詳細は"Tutorial – Motor Control Design Suite.pdf"を参照してください。

2.7 サブ回路メニュー

サブ回路メニューの機能について説明します。 新サブ回路 新しいサブ回路を作成します。 サブ回路を開く 既存のサブ回路をロードします。サブ回路は画面上にブロックとして現れ ます。 サブ回路を編集 サブ回路のサイズとファイル名を編集します。 サブ回路名を表示 サブ回路の名前を表示します。 サブ回路ポート名表示 メイン回路でサブ回路の端子を表示します。 メイン回路でサブ回路の端子を隠します。 サブ回路ポート名非表示 以下の機能はサブ回路内に適用されます。 サブ回路のサイズを設定します。 サイズ設定 双方向ポートを追加 サブ回路に双方向接続ポートを配置します。 入力信号ポートを追加 サブ回路に入力信号ポートを配置します。 出力信号ポートを追加 サブ回路に出力信号ポートを配置します。 ポートを表示 サブ回路のポートを表示します。 デフォルト変数一覧を編集 サブ回路用のデフォルト変数を編集します。 イメージ編集 サブ回路のイメージを作成・編集します。 1ページアップ メイン回路(参照元)に戻ります。サブ回路は自動的に保存されます。 トップページ 低レベルのサブ回路から最上位のメイン回路にジャンプするために使い ます。これはサブ回路が多層になっている場合にご使用ください。

サイズ設定、ポートを表示、デフォルト変数一覧を編集、イメージ編集の設定をサブ回路で行った場合、 メイン回路側でも適用されます。メイン回路とサブ回路を接続するために、次の3種類のポートを使用する ことができます。

・パワー回路および機械システムと接続するための双方向ポート

・制御回路と接続するための入力ポート

・制御回路と接続するための出力ポート

双方向ポートは制御回路で使用できますが、信号の方向を明確にするために、制御回路では入力信号ポ ートおよび出力信号ポートの使用を推奨します。また、コード生成にサブ回路を利用する場合には入力信 号ポートもしくは出力信号ポートのみ使用可能です。

サブ回路ブロックの上をマウスで右クリックして**属性**を選択するとサブ回路のプロパティダイアログが 表示されます。 [サブ回路ファイルを変更]、[サブ回路変数]、 [カラー] の3つタブがあります。

[サブ回路ファイルを変更]タブ

このタブでは、サブ回路の名前を編集することができます。

回路ファイルを変更

ボタンをクリックして他のサブ回路を選択することができます。

[サブ回路変数]タブ

このタブでは、サブ回路の変数の編集が可能です。例えば、抵抗値1mΩ、「Rparasitic」という名前の 抵抗に対し、「Parasitic Resistance」という説明文を追加する場合、以下のように記入します。

変数説明 Parasitic Resistance

変数名 Rparasitic

変数値 1m

変数説明のチェックボックスをチェックすると、回路図上で以下のように表示されます。 Parasitic Resistance = 1m

サブ回路の変数のリストは編集することができます。現在の変数のリストをデフォルト値に設定するためには、 デフォルト変数として設定 ボタンをクリックしてください。

リストの値を変更した後に、 デフォルトの変数の再ロード ボタンをクリックし、デフォルト値を呼び出すことも可能です。

SimCoderを利用してサブ回路の自動コードを生成することができます。サブ回路のコードを生成する ためには、 <u>コード生成</u>ボタンをクリックしてください。シミュレーション時に生成されたコードでサ ブ回路を置き換えのチェックボックスをチェックすると、サブ回路の回路図が生成されたコードで置き 換わります。

[カラー]タブ

サブ回路の色を変えることができます。

例:サブ回路の使用例

次の図は、LCフィルタをサブ回路として含んだチョッパ回路の例です。図中の右側にサブ回路の構成を示します。この例では、左側に2つの双方向ポート("in+"、"in-")、右側に2つの双方向ポート("out+"、"out-")が配置されています。

2.7.1 サブ回路作成 ーメイン回路上での作業

メイン回路でサブ回路を作成するステップは以下の通りです。 - メイン回路を開く、もしくは作成してください。

- サブ回路が未作成の場合は、**サブ回路 ≫ 新サブ回路**を選択してください。
- 既にサブ回路が存在する場合は、**サブ回路 ≫ サブ回路を開く**を選択してください。
- サブ回路ブロック(長方形)が画面上に表示されます。位置を調整してサブ回路を配置してください。

メイン回路上で作成した回路をサブ回路に変換する場合は、該当回路を選択した状態で右クリックし、 サブ回路を作成を選択してください。必要に応じてポート位置の調整とワイヤの追加を行ってください。

2.7.2 サブ回路作成 ーサブ回路内での作業

サブ回路をダブルクリックして、サブ回路を開いてください。

- メイン回路と同様に、回路の作成および編集が可能です。
- ・サブ回路のサイズを決定するためには、サブ回路 ≫ サイズ設定を選択してください。サブ回路のサイズは、メイン回路内での表示やワイヤ接続を考慮のうえ、適切なサイズを設定してください。
 ・サブ回路作成後に、サブ回路のノードを対応するメイン回路のノードに接続する必要があります。
- **サブ回路 ≫ ポートの追加**を選択すると、ポートのイメージが表示されます。回路上にポートを 配置すると、ポップアップウィンドウ(下図、左側)が表示されます。

4 辺にある菱形はサブ回路シンボル上でのポートの位置を表します。角への接続はできないの で、4 つの角には菱形はありません。菱形を選択すると、色が赤に変わります。デフォルトでは 左上の菱形が選択され、赤色になります。希望の菱形をクリックして、ポート名を指定してくだ さい。

この例では、メイン回路"chop.sch"の中で、サブ回路の左側に2つ、右側に2つのポートがあります。端子の相対的位置は上部2つのポートは上端より1目盛下で、下部2つのポートは下端より1目盛上です。

左上部のポートを指定するためには、左辺一番上の菱形をクリックして"in+"と入力してください。テキスト"in+"が菱形の内部に入り、ポートに"in+"とラベルが付きます。ポートを左上部のポートに接続してください。ポート"in-", "out+", "out-"を接続するには同様の手順を繰り返してください。

- 4つのポートを配置した後、ポートの割り当てとサブ回路が以下のように表示されます。

2.7.3 メイン回路でのサブ回路の接続

サブ回路を作成し、ポートを設定したら、サブ回路ブロックをメイン回路に接続します。

- メイン回路上でサブ回路ブロックのポートが境界上で白抜きの丸として現れます。
- サブ回路ブロックを指定し、サブ回路 ≫ ポートを表示 を選択すると、サブ回路内で設定ポート 名が表示されます。
- 接続端子にメイン回路を接続してください。

2.7.4 サブ回路のその他の機能

この節ではサブ回路のその他の機能を以下の例を用いて説明します。

2.7.4.1 メイン回路からサブ回路への変数値の受け渡し

上記の例では、メイン回路 (main.sch) がサブ回路(sub.sch) を含みます。サブ回路内では、インダクタ ンスは L、キャパシタンスは C と定義されています。L と C のデフォルト値は、**サブ回路 ≫ デフォルト変** 数一覧を選択することで設定できます。この例では、L は 5mH に、C は 100uF に設定しています。

サブ回路が最初にメイン回路に組み込まれた際に、メイン回路(main.sch)から、サブ回路 ≫ サブ回路を 編集を選ぶと、[サブ回路変数]のタブにデフォルト値のリストが表示されます。ここで新しい変数を追加し たり、値を変更したりすることができます。この例では、L は 2mH に変更し、C はデフォルトのままにし ています。

変数とその値はネットリストファイルに保存され、シミュレーションに使用されます。サブ回路内のデフォルト値はネットリストファイルには保存されず、シミュレーションに反映されませんのでご注意ください。

この機能を使うことで、サブ回路のパラメータをメイン回路から設定することができます。同じサブ回路をひとつのメイン回路で複数回使用する場合に、同じ変数に違う値を設定することができます。たとえば、サブ回路 sub.sch を2回使用する場合、Lの値として1回目は3mH、次は1mH を設定することができます。

また、この例ではパラメータは変数(たとえば直流電圧源の Vin)あるいは数式(負荷抵抗の R1+R2)として定義されています。変数 Vin、R1、R2 はパラメータファイル para-main.txt にて設定しています。パラメータファイルの詳細は 6.7 を参照してください。

2.7.4.2 サブ回路シンボルの編集

サブ回路のシンボルを編集する手順について説明します。

- サブ回路編集画面において、**サブ回路 ≫ イメージ編集**を選択すると下図のようなウィンドウが ポップアップで表示されます。赤色で表示されているダイアモンドはサブ回路のポートで、位置 はメイン回路に表示されるものと同じです。

- 描画ツールを使ってサブ回路のシンボルを作成・編集することができます。描画ツールが表示 されていない場合は、View ≫ Drawing Tools にチェックをいれてください。拡大 または縮小 のアイコンをクリックすることで、シンボル作成領域の大きさを調整することができます。シン ボルを作成すると、以下のようなウィンドウが開きます。

File Edit View Window	
Subcircuit Image: Et/psin6_dem	

- サブ回路のウィンドウ(sub.sch)に戻ってサブ回路を保存します。作成されたサブ回路のシンボ ルがメイン回路に表示されます。

2.7.4.3 サブ回路を PSIM の素子リストに追加する

PSIM のインストールフォルダ内に、User Defined という名前でフォルダを作成し、このフォルダにサ ブ回路ファイルを保存すると、サブ回路が他の PSIM の素子と同じように素子メニューから User Defined フォルダ内の素子を選択することができます。さらに、User Defined フォルダの中にサブフォルダを作成 して、その中にサブ回路ファイルを入れることができます。たとえば、素子メニューは以下のように整理 することができます。

- パワー
- 制御ライブラリ
- その他
- 電源
- 記号

- (User Defined フォルダ内の素子が表示されます。)

- Subcircuit 1
- Project A
 - Subcircuit 2
 - Subcircuit 3
- Project B
 - Subcircuit 4

このように、共通に使うサブ回路はグループに分けて保存しておくと便利です。

2.8 素子メニュー

サブ回路メニューの機能について説明します。

パワー回路用の回路素子です。R、L、C、スイッチングデバイス、変圧器、
モータドライブモジュールなどが含まれます。
制御回路用の回路素子です。計算ブロック、論理素子、デジタル制御モジ
ュールなどが含まれます。
スイッチコントローラ、センサ、プローブ、パワー回路と制御回路のイン
ターフェース素子など、パワー回路と制御回路の双方で使用される素子で
す。
電圧源素子および電流源素子です。
描画用の記号です。記号はシミュレーションには影響を与えません。
イベント制御素子は、SimCoder 機能の一部です。
F2833x や F2803x などのターゲットハードウェア用のコードを自動で生
成します。
PSIM のインストールフォルダ内に作成した User Defined フォルダに保存
された回路をサブ回路として配置することができます。
タイトルブロックを配置します。

2.9 シミュレーションの実行

PSIM では、シミュレーションを実行する方法が2通り用意されています。 ・シミュレートメニュー ・コマンドライン

2.9.1 シミュレートメニュー

シミュレーション制御	シミュレーションパラメータ(タイムステップ、総時間、プリントタイム
	等)を設定します。
	本機能を選択するとカーソルが時計イメージに変化します。時計イメー
	ジを回路図上に配置してください。回路図上で時計イメージをダブルク
	リックすると、シミュレーション制御パラメータを設定することができ
	ます。
シミュレーション実行	シミュレーションを実行します。
SPICE シミュレーション実行	PSIM に内蔵されている SPICE エンジンでの SPICE シミュレーション
	を実行します。
シミュレーション中止	実行中のシミュレーションを中止します。
シミュレーション一時停止	実行中のシミュレーションを一時停止(ポーズ)します。
シミュレーション再開	ー時停止したシミュレーションを再開します。
次のタイムステップへ	次のタイムステップまでシミュレーション実行して停止します。
シミュレート	
SIMVIEW 実行	波形表示プログラム SIMVIEW を実行します。
ネットリストファイルを	回路図のネットリストファイルを生成します。
生成	
ネットリストファイル(XML)	回路図のネットリストファイルを XML 形式で生成します。
を生成	
ネットリストファイル	生成されたネットリストファイルを表示します。
を表示	
SPICE ネットリストの生成	回路図から SPICE ネットリストファイルを生成します。
(.net)	
SPICE ネットリストの生成	LTSpice シミュレーションへの SPICE ネットリストの生成。.自動的に
(.cir)	cir ファイルでフォルダに保存されます。
警告を表示	シミュレーションから警告メッセージがあれば表示します。
固定小数点範囲チェック結果	固定小数点範囲チェック結果を表示します。固定小数点演算が
を表示	Simcoder タブの下 シミュレーション制御 ダイアログで指定されている
	場合に使用します。
SLINK ノードを配置	SLINKノードを再配列します。SimCoupler モジュールを利用して PSIM
	と MATLAB/Simulink との共同シミュレーションを行う際この機能を利
	用します。その他の詳細についてセクション56を参考にしてください。
マルチレベルの素子のレベル	
チェック	
	きます。この機能は PSIM シミュレーションまたは SPICE シミュレー
	ションと互換ではない要素も表示します。
コード生成	回路図のコードを生成します。この機能は SimCoder モジュールを利用
	して自動コード生成のためです。 その他の詳細について SimCoderのユ
	ーザーズマニュアルを参考にしてください
コード生成フォルダを聞く	
	コートノオルダを用さより。
	この機能は SimCoder ライセンスを有する場合にのみ有効です。
ランタイムグラフ	シミュレーション結果を実行中に確認することができます。

ランタイムグラフ機能のダイアログウィンドウにはStandardとVectorの二つのタブがあります。 Standardのタブでは時間軸で波形表示する項目の一覧を表示します。Vectorタブはベクトルプロットのた めの設定をします。ベクトルの実部、虚部の設定はStardardタブにある変数リストから選択できるように なっています。

シミュレーション途中の出力変数の波形表示はシミュレート>>ランタイムグラフで変数を選ぶか電圧/ 電流プローブの上部を右クリックしてShow probe's value during simulationを選択するかどちらでも 実行することができます。

ランタイムグラフはワンタイムモードにおいて使用できます。ランタイムグラフで表示できる変数は、 SIMVIEWで表示するために接続した電圧プローブ、電流プローブ等で定義した変数です。更に、ランタイ ムグラフでは、シミュレーションの開始から終了まで全ての時間について結果を表示することができます。

ステノランでは、フミュレーションの研究がちばりょく生くの時間について相来を扱かすることができよす。 フリーランモードで、ランタイムの間、シミュレーションの途中で素子のパラメータ値を変えることが できます。この機能を用いて、電圧/電流スコープで波形を観測しながら、所望の性能が得られるように調 整することができます。

<u>フリーランモードでのシミュレーション例</u>

降圧型コンバータの回路を例に、フリーランモードについて説明します。

下図では、左側がワンタイムモードでシミュレーションを実行するためのオリジナルの回路モデルで す。右側がフリーランモードで実行するため回路で、電圧スコープが追加されています。

- フリーランモードでシミュレーションするための手順を説明します。
 - シミュレーション制御から"フリーラン"のチェックボックスをチェックしてください。
 - **素子 ≫ その他 ≫ プローブ**から、2 チャンネルの電圧スコープを選択し、上図右側のように回路 と接続してください。
 - スコープをダブルクリックすると、スコープウィンドウが表示されます。シミュレーションを実 行すると、スコープにシミュレーション結果としての波形が表示され、連続的に更新されます。
 - シミュレーションを実行しながら、素子のパラメータを調整することができます。PI 制御器のゲインを調整する場合は、PI 制御器を右クリックすることで表示されるメニューから、ランタイム変数 ≫ ゲインを選択してください。ゲインの値がテキスト表示されます。
 - ゲイン値のテキストをクリックすると、下図のようにパラメータ調整用のダイアログが表示され ます。

- このダイアログウィンドウに直接キーボードから数字を入力するか、またはアップ/ダウン矢印 キー押すことにより数字を変更することができます。Applyをクリックすることにより、シミュ レーションに設定されたゲインが反映されます。ゲインの変更後の波形の変化を電圧スコープ で確認することができます。同様に、他のパラメータ、例えば、電流指令、直流入力電圧、イン ダクタンス、キャパシタンスおよび負荷抵抗などの値を変更することができます。
- フリーランモードでは、ブランチの電流を表示することができます。例えば、インダクタの電流 を表示する場合には、インダクタを右クリックすることで表示されるメニューから、ランタイム 変数 ≫ 電流スコープを選択し、電流を表示するブランチを選択してください。
- 電流スコープのブロックが表示されます。ブロックのイメージは電圧スコープブロックと同様ですが、接続端子がありません。インダクタ電流波形を見るためには、スコープをダブルクリックしてウィンドウを開いてください。下図は、電流スコープと電圧スコープのウィンドウを開いた例です。同様に、他のブランチの電流波形を観測することができます。

2.9.2 コマンドラインオプションでシミュレーションの実行

プログラム PsimCmd.exe の実行によりコマンドラインオプションでシミュレーションも起動すること ができます。例えば、フォルダ「c:\psim\examples\dc-dc」に格納される「buck.psimsch」回路のシミュレ ーションを実行するためには、PSIM フォルダに移動し、下記コマンドを実行します。

PsimCmd.exe -i "c:\psim\examples\dc-dc\buck.psimsch" -o "c:\psim\examples\dc-dc\buck.smv"

コマンドラインのフォーマットは以下の通りです。

PsimCmd.exe -i "[input file]" -o "[output file]" -v "VarName1=VarValue1" -v "VarName2=VarValue2" -t "TotalTime" -s "TimeStep" -g

パラメータの値は、ダブルコーテーション(" ")で囲む必要があります。

- コマンドラインパラメータは以下の通りです。
- -i 入力回路図のファイル名を指定してください。
- O 出力ファイル名を、テキスト形式(.txt)または、SIMVIEW 形式(.smv)で指定してください。
- -v 変数名および値を指定してください。
 変数は複数指定することができます。
 例えば、抵抗 R1 を 1.5、インダクタ L1 を 0.001 として指定するためには以下のように
 記述してください。
 - -v "R1=1.5" -v "L1=0.001"

変数の上限は 30 です。

- -t シミュレーション総時間を指定してください。
- -s シミュレーションタイムステップを指定してください。
- -g シミュレーションの完了後に SIMVIEW を実行します。

コマンドラインオプションでは、バッチランを使用すると自動で複数の回路モデルのシミュレーション を実行することができます。

2.10 オプションメニュー

オプションメニューについて説明します。

設定	編集、印刷、色、シミュレーション、バックアップ、ソフトウェアのラ
	イセンスや更新などのためのオプションを設定します。
	詳細は、2.10.1 を参照してください。
Languages	言語を設定します。
	設定を有効にするためには、PSIMの再起動が必要です。
SimView 自動実行	シミュレーション完了後に SIMVIFW を自動的で起動します
パス設定	PSIM 検索パス デバイスファイルパス および C ブロックインクルー
	ドパスを設定します。
パスワード指定	パスワードで保護された回路図を表示するためにパスワードを入力し
	ます。
パスワード無効	パスワードで保護された回路図の保護を無効にします。
ユーザ定義キーボード/	ツールバー、キーボード、アプリケーションメニュのカスタマイズを行
ツールバー	います。
ユーザ定義設定を保存	カスタマ設定を保存します。
	各素子のデフォルト値、カスタムツールバー設定、カスタムキーボード
	設定を保存することができます。保存する項目を選択してください。
ユーザ定義設定を読み込み	カスタム設定を読み込みます。
レガシーツールバー	PSIMv10.0 以前のバージョンのツールバーをロードします。
を読み込み	
ディアクティベート	PSIM ライセンスを無効にします。この機能はソフトキー(Softkey)バー
	ジョンのみに有効です。
アップデート確認	Powersim 社のサーバへアップデート可能なソフトウェアがあるかど
	うかチェックします。新しいアップデートがあれば、このアップデート
	情報をダウンロードしてインストールができます。(サポート契約に加
	入している方のみ)

2.10.1 設定オプション

オプションメニューの設定は[一般的情報]、[Advance]、[カラー]、[ページサイズ]、[ライセンス]の機能 に分類されています。各機能はタブで切り替えることができます。

[一般的情報タブ]は、編集、テキストフォント、印刷、シミュレーションに分類されます。

「 <i>編集</i> 」セクション	
グリッド表示	PSIM 回路図にグリッドを表示します。
ズーム倍率	回路図の拡大と縮小の倍率を定義します。
ラバーバンドを有効	ラバーバンド機能を有効にします。
	ラバーバンド機能が有効の場合、素子もしくは回路ブロックを移動し
	た際に、回路の他の部分とのと接続が保持されます。
印刷ページ罫線を表示	チェックすると、プリントアウト領域の境界線が表示されます。

「*テキストフォント*」セクション

デフォルトフォント	回路図のデフォルトテキストフォントを設定します。
ランタイムグラフフォント	ランタイムグラフのテキストフォントを設定します。
位置揃え	テキストの整列位置を設定します。
「*印刷*」セクション

線の太さ プリントアウトで表示される線の太さを定義します。 線の太さは 1(最小)から 4(最大)まで設定することができます。 本設定はプリントアウトのみに反映され、画面上の表示には反映され ません。

「*シミュレーション*」セクション

シミュレーション結果の保存形式をバイナリフォーマット(デフォル 結果の保存 ト)とテキストフォーマットが選択できます。バイナリフォーマットの 場合、ファイルサイズが小さく、ロード時間が速くなります。

出力バッファサイズの制限
 このオプションをチェックすると、シミュレーションデータはセグメントで結果ファイルに書かれます。例えば、バッファサイズを20MBに設定する場合、シミュレーションデータは最初にバッファに保存され、そして、20MBに達すると、全体の20MBのデータは結果ファイルに書かれます。

ランタイムグラフはバッファのデータを利用してグラフをプロットします。 したがって、古いデータがファイルに保存されて、新しいデー タがバッファに記録されます。更に、ランタイムグラフは新しいデータの波形だけを示します。

ランタイムグラフですべての波形を保有するためには、バッファサイ ズを増加させるか、またはこのオプションのチェックを外します。 しかしながら、このオプションを選択しないと、PSIMは最初に必要な メモリバッファを割り当てます。 シミュレーション刻みが小さく、総 時間が長く、多くの出力データがある場合、非常に大きいメモリが必要 になります。この場合、十分なメモリ容量がないと、シミュレーション が中断されます。

シミュレーション 警告メッセージを非表示にします。

シミュレーション中のこのオプションがチェックされていると、回路のすべての電圧と電流 すべての電圧と電流を保存
が、表示のために保存されます。

電圧や電流を表示させるためには、シミュレーションが完了し、結果が SIMVIEW にロードされた後に表示 ≫ 電圧/電流表示を選択してくださ い(または対応するシンボルをクリックしてください)。カーソルがノー ドまたはブランチの上にあるとき、電圧プローブまたは電流クランプ プローブのイメージに変化します。マウスの左ボタンをクリックする と、対応する電圧または電流が SIMVIEW で表示されます。差動電圧を 表示するには、表示 ≫ 差動電圧表示を選択し、差動電圧を求めるノー ドを順にクリックします。差動電圧の波形が SIMVIEW で表示されま す。

オシロスコープ表示のオシロスコープの最大ポイント数を設定します。10,000から 最大ポイント数 100,000,000まで設定できます。

[Advance]タブは、Update、Backup、Idle time、Hardware code generation、Alternate PSIM Help File Path、Delete Simview file on exit に分類されます。

「*Updat*e」セクション ソフトウェアの更新を確認

警告メッセージ非表示 シミュレーション中の

> ソフトウェアのサポート契約に加入した場合、Powersim 社のサーバ から最新のアップデートファイルをダウンロードすることが可能に なります。ここをチェックすると、毎月アップデート情報を自動的に 確認します。

「Backup」セクション 自動バックアップ 指定された時間間隔で、編集中の回路のバックアップを作成します。 バックアップファイルはPSIMが正常に終了したときに自動的に削除 されます。

「Idle Time」セクション タイムアウト このオプションは、PSIMネットワークバージョンのみに有効です。 指定された時間、PSIMが操作されなかった場合に、PSIMがタイム アウトされます。PSIMがタイムアウトされると、そのライセンス が解放され他のユーザが使用することができます。 ユーザがライセンスを無意識に保持し続けることを防止できます。

「Hardware code generation」セクション

素子の横にイメージを表示 このオプションは SimCoder モジュールがある場合にのみ有効です。 素子選択の際に、コード生成に使用することができる素子の横にアイ コンを表示します。回路図作成の際に、コード生成に使用できる素子 確認しながら素子を選択することができます。

「Alternate PSIM Help File Path」セクション 代替 PSIM ヘルプファイルの デフォルトでは、PSIM フォルダからヘルプファイル psim.chm を読

パス設定 み込みます。このオプションをチェックすると、ヘルプファイルへの パスを指定することができます。

「Delete Simview file on exit」セクション

SIMVIEW ファイルを削除 このオプションがチェックされている場合、Simview の出力ファイル をユーザが保存しない状態で PSIM を終了した場合、出力ファイルを 自動的に削除します。

[カラー]タブでは、以下の設定を行うことができます。

カラー設定グリッド、素子、サブ回路、ポート、ワイヤ、テキスト、ノード、ラ
ベルの色を設定することができます。ワイヤカラーワイヤの色を設定することができます。
デフォルト色を使用するか、各種回路タイプ毎に設定するかを選択す
ることができます。

2.10.2 パス設定オプション

オプションメニューのパス設定では、PSIM 検索パスとして次の4つを定義しています。

-PSIM 検索パス:DLL ファイルの検索パス

-デバイスファイルパス:サーマルモジュール・デバイスファイルの検索パス

-C ブロックインクルードパス:ファイルを含む C ブロックの検索パス

-SPICE モデルパス: SPICE モデルライブラリの検索パス

PSIM 検索パス,では、外部 DLL ファイルを読み込む際の検索パスを設定することができます。例え ば、回路に DLL ブロックが含まれていて、そこで使用する DLL ファイルが、回路図ファイルの存在する フォルダおよび PSIM フォルダ以外のフォルダに保存されている場合に、DLL ファイルが存在するフォル ダを**パス設定**機能で設定しておくことで正しくシミュレーションすることができるようになります。 PSIM は以下の順序で外部 DLL ファイルを検索し、DLL ファイルが最初に検出された時点で、ロードさ れます。

- PSIM をインストールしたフォルダ(PSIM.exe が存在するフォルダ)
- 回路図ファイル(.sch ファイル)が存在するフォルダ
- パス設定機能で設定したフォルダ

例えば、PSIM をインストールしたフォルダが C:\PSIM で、シミュレーションする回路図ファイルが C:\TEMP にあり、パス設定機能で C:\TEMPDLL フォルダが設定されているとき、DLL ファイルは以下の 3 つのフォルダのいずれかに置くことができます。また、DLL ファイルは以下の順序で検索されます。

- C:\PSIM - C:\TEMP
- C:\TEMPDLL

デバイスファイルパスは、サーマルモジュールデバイスファイルのために追加の検索パスを定義します。 PSIM は以下の順序でサーマルモジュールのデバイスファイルを検索します。

- PSIM ディレクトリの"device"サブフォルダ
- デバイスファイルパスで設定されたフォルダ

PSIM のデバイスサブフォルダおよびデバイスファイルパス内のすべてのデバイスファイルが読み込ま れます。

C ブロックインクルードパスはCブロックのインクルードファイルの検索パスを定義します。

2.10.3 ツールバーとキーボードのカスタマイズ

ツールバーおよびキーボードのカスタマイズについて説明します。

- ツールバーのカスタマイズ
 - AND ゲートを例に挙げ、カスタマイズツールバー機能で新規にボタンを作成する方法を説明します。 - **オプション ≫ ユーザ定義キーボード/ツールバー**を選択します。[ユーザ定義ツールバー]タブ の開き、「新ツールバー」ボタンを選択するとカスタムツールバーダイアログが開きます。

Custom Toolbar				
Toolbar name:				
Add Button	Insert Button	Edit Button	Delete Button	
Add Separator	Insert Separator	Delete Separator		
			ОК	Cancel
				J

- ボタン追加 ボタンをクリックすると以下の画面が表示されます。

 アイコン編集エリアに「AND ゲート」のアイコンを描くか、素子から選択します。
 素子から選択する場合、"コマンド編集"セクションの素子オプションを選択して「AND Gate」 をハイライトします。次に OK ボタンを押してカスタムツールバーウィンドウに戻ります。 「AND ゲート」のアイコンがカスタムツールバーダイアログウィンドウに表示されます。

[ユーザ定義ツールバー]タブのボックスにチェックを入れるとツールバーが表示され、チェックを 外すと表示されなくなります。

<u>キーボードのカスタマイズ</u>

抵抗要素をキーボード<mark>「</mark>r」キーで選択する例を説明します。

- **オプション ≫ ユーザ定義キーボード/ツールバー**を選択します。カスタムキーボードダイアログウ ィンドウを表示します。

Flements	C Commands		Commands	Key combination
ACSWEEP ACSWEEP FILE PARAMSWEEP PARAMSWEEP 1-channel Scope 1-channel Scope 1-ph 3-w Transforme 1-ph 3-w Transforme 1-ph 4-w Transforme 1-ph 5-w Transforme 1-ph 5-w Transforme	New Open Close Close All Save Save As Save All Save Mith Password Print Print Preview Print Selected Print Selected Print Page Setup Print Page Setup Exit	Press new shortcut key: Assign	Copy Cut Exit Find Filp T/B Help Index New Open Paste Print Save Switch to next pane Switch to previous Top Page	Ctrl-C Ctrl-X Alt-F4 Alt-F3 F3 F1 Ctrl-N Ctrl-N Ctrl-D Ctrl-V Ctrl-P Ctrl-S F6 F4 Exemption

- "ショートカットキーを追加"の項目で、素子オプションを選択します。次に、「抵抗」素子をハ イライトします。
- "新しいショートカットキーを押す"の入力フィールドにカーソルを移動してキーボードの<r>キーを押します。次に 割り当て をクリックします。
- < r >キーが「抵抗」素子に割り当てられます。"現在のショートカットキー"に定義されているショートカットキーのリストが表示されます。

2.11 ユーティリティメニュー

ユーティリティメニューについて説明します。

パラメータツール	この機能は、回路図なしでパラメータファイルを開きます。 パラメータファイルの読み込みや、計算をするための式を入力するダ イアログを起動します。
Script ツール	スクリプトツールではスクリプトを実行できます。
SPICE ネットリストチェック	このツールは PSIM で使用される SPICE エンジン CoolSPICE でサポ
	ートされているかをチェックします。互換性のないネットリストを
	CoolSPICE と互換性のあるネットリストへ変換し、サポートされてい
	ないネットリストを可能な限り修正し使用できるよう提案してくれま す。
s2z コンバータ	このプログラムは s 領域の関数を z 領域の関数に変換します。デジタ
	ル制御モジュールのライセンスがある場合だけ、このプログラムは有
	効になります。
SimCoupler 設定	PSIM と MATLAB/Simulink との連成シミュレーションのセットアップ
	を行うためにプログラム SetSimPath.exe を起動します。
Set Default PSIM Program	.sch、.psimsch、および.smv ファイルを Windows エクスプローラーで
	ダブルクリックしたときに、このバージョンの PSIM で開くように設定
DSP オシロスコーフ	DSP オシロスコーフを起動します。この機能は、SIMCoder Hardware
	Targetの一部として利用可能です。リアルダイムでDSPの波形を表示 またには、COLI機能に、体に体界されます
	9 るには、SUI 俄能と一緒に使用されます。 DSDナシロファープを使用する本法の詳細については "Tutorial Using
	DSFオ シロスコーフを使用する方法の計画に ついては、Tutorial-Osing SCI for Wayeform Monitoring ndf"を参照してください
デバイスデータベース	数王ジュールの PcdEditor eve というデバイスデータベースエディタを
エディタ	になった。 記動します。
Curve Capture Tool	このツールは、メーカーのデータシートからカーブを取り込みます。取
·	り込まれたデータは、SIMVIEW を用いて表示したり、ルックアップテ
	ーブルとして使用することができます。このツールは、曲線からの x/y
	の値を読み取るために使用します。
	取り込み手順を開始するには、ダイアログウィンドウの左上隅にある
	右矢印をクリックします。
B-H 曲線	このプログラムは可飽和コア素子のB-Hカーブプロッタを起動します。
太陽電池(物理モデル)	このプログラムは太陽電池ブロックの i-v カーブをプロットします。こ
	の機能は再生可能エネルギーモジュールに含まれています。
ワルトフキャパジタモテル	ワルトフキャハシタのハフメータ抽出ツールです。実験ナータからワ
	ルトフモナルハフメータを抽出することかできます。
SmartCtrl を起動/	SmartCtrl ソフトリェアを起動します。また、ac スイーノのシミュレー
エクスホート	ション結果が存在する場合には、ての結果をSilidilouliに出力します。 SmartCtrl は PSIM とけ独立したソフトウェアで 制御ループ設計の
	ためのソフトウェアです。詳細については SmartCtrl のマニュアルを
	参照してください。
単位換算	長さ、面積、重さ、および温度における単位を変換することができます。
電卓	SIMVIEWの電卓機能を使用します。

2.12 PSIM ライブラリの管理

PSIM ライブラリは、ネットリストライブラリとイメージライブラリの2種類のライブラリから構成されます。ネットリストライブラリを編集することはできません。

イメージライブラリは編集または新規追加ができ、PSIM フォルダ内に格納されているイメージライブ ラリは、PSIM により自動的に取り込まれます。標準のイメージライブラリは、psimimage.lib に格納され ています。ユーザは psimimage.lib を編集することはできませんが、編集 > ライブラリ編集 > ライブラ リファイル編集で画像を表示してコピーすることができます。

ユーザは、**編集 > ライブラリ編集 > ライブラリファイル編集**で 新しいライブラリを作成 を選択す ることにより新しい画像ライブラリを作ることができます。その後ライブラリ名を決定するとその名称が PSIMの素子メニューに表示されます。このライブラリファイルはPSIMフォルダ内に作成されます。

イメージライブラリを編集するためには、**編集 ≫ ライブラリ編集 ≫ ライブラリファイル編集**から、 _____選択したライブラリを編集 ____選択してください。下図に示すライブラリ編集ダイアログが表示されま

す。ダイアログには、メニューツリーおよび編集機能が表示されます。

ラ<mark>イブラリエディタでは以下のような機能が提供されます。</mark>

Menu name: My Library	-
Hernu 1 My Resistor Mercu 2	Up Down > < Add Separator Add Submeru Edit Edit Image New Element Save Element as Delete Element More >>
Netlist name Netlist name: Save Image Library Update Menu	New DLL Element New Subcircuit Element (Esternal) New Subcircuit Element (Internal) Help Close

<u>۲</u> ヘ	メニュー内で素子を1つ上に移動します。
<u></u> ጉ	メニュー内で素子を1つ下に移動します。
>	素子を1段下のレベルに移動します。
<	素子を1段上のレベルに移動します。
セパレータを追加	素子間にセパレータを追加します。
サブメニューを追加	ライブラリにサブメニューを追加します。
編集	素子名を変更します。
イメージ編集	素子のイメージを編集します。
新素子作成	ライブラリ内に新しい素子を追加します。
	新しい素子は、ネットリストライブラリのネットリスト素子と関連付
	けられます。
名前を付けて素子を保存	既存素子を新しい素子として別名で保存します。初期イメージとして
	既存素子のイメージが使用されます。
素子を削除	ライブラリから素子を削除します。
新しい素子(DLL)	DLL ファイルから素子を新規に作成します。
新サブ回路素子(外部)	サブ回路から素子を新規に作成します。サブ回路ファイルはライブラ
	リ外に保存されます。
新サブ回路素子(内部)	サブ回路から素子を新規に作成します。サブ回路ファイルはライブラ
	リ内に保存されます。

PSIMライブラリリストにカスタムモデルを追加するためには、以下の2つの方法があります。

1つ目の方法は、サブ回路形式の回路図ファイルを、User definedフォルダ(あるいはUser definedフォル ダのサブフォルダ)に保存することです。User definedフォルダ内に保存された回路図ファイルおよびサブ フォルダが、PSIMの素子メニューのライブラリリストに表示されます。

もう1つの方法は、イメージライブラリにカスタムモデルを直接追加することです。この方法の利点は、 イメージとインターフェースの点で、カスタム素子に標準素子と同様の仕様を持たせることができる点に あります。さらに、カスタム素子に、ヘルプファイルを関連付けることも可能です。

2.12.1 二次イメージの作成

PSIMでは、標準のイメージに加えて、ユーザ独自のイメージ(二次イメージ)をライブラリに追加することができます。

追加の素子イメージは標準イメージライブラリあるいはユーザのカスタムイメージライブラリで作成することができます。新しいイメージは第2イメージライブラリとして、.lib2形式で保存されます。

標準イメージライブラリ内の「Diode」に対する第2イメージをライブラリ「mylib.lib2」内に作成する 方法を以下に説明します。

- 編集 ≫ ライブラリ編集 ≫ 二次イメージライブラリファイル編集から 新しいライブラリを作成 を選択してください。ダイアログ内で、ライブラリ名を"mylib.lib2"と設定してください。
- "mylib.lib2"を選択し、 選択したライブラリを編集 をクリックしてください。二次イメージ編 集用のダイアログが表示されます。
- 追加 ボタンをクリックして、PSIM ライブラリリストの **パワー ≫ スイッチ**からダイオードを 選択してください。二次イメージリストにダイオードが表示されます。表示「ダイオード」の前に 表示される「PSIMIMAGE」は標準イメージライブラリ psimimage.lib のダイオード素子であるこ とを示します。
- ダイオードをハイライトして 編集 ボタンをクリックしてイメージを作成してください。
- 作成したイメージを素子のデフォルトイメージとして使用する場合は デフォルトに設定 をクリックしてください。

作成した二次イメージは、回路図作成時に選択し利用することができます。例えば、ダイオードを回路 図に追加してダブルクリックすると、プロパティダイアログが表示されます。このダイアログの[Color]タ ブを選択してプルダウンを選択すると2つイメージが表示されます。標準イメージライブラリとカスタムイ メージライブラリです。

ニ次イメージを選択すると、同じ素子のすべてのイメージが自動的に二次イメージに変更されます。次 に回路図を作成もしくは開く際に、選択されたイメージがデフォルトイメージとして設定されます。

ニ次イメージのライブラリファイルを共有することで、複数のユーザ間で新規に作成したイメージライ ブラリを二次イメージとして共有することができます。 2.12.2 ライブラリヘ新しいサブ回路要素の追加

サブ回路でモデル化された新しい素子を PSIM ライブラリに追加するための手順には、以下の3つのステップがあります。

- 新しい素子をサブ回路モデルとして作成
- PSIM ライブラリへ素子を追加
- この新しい素子用のオンラインヘルプファイルを作成

LC フィルタを例に、これらのステップについて説明します。

<u>Step1: サブ回路の作成</u>

最初のステップは、サブ回路を作成することです。メイン回路からサブ回路を呼び出す場合と同様にサブ回路を作成してください。例として、二次の LC フィルタ(ファイル名: "LC_filter.sch")のイメージを下図に示します。

ライブラリに追加するためには、モデルのパラメータ(インダクタンスLおよびキャパシタンス C)は、 回路図に配置した後に、プロパティウィンドウを通じて設定できる必要があります。そのため、パラメー タLおよびCは変数として定義する必要があります。

PSIM - [Subcircuit Image : C:\PSIM7.0_ File Edit View Window	Subcircuit Default Variable List
	Variable Label Variable Name Variable Value Inductance L 1m Capacitance C 100u
	Add Modify Remove
$ \land \diamond \diamond \diamond $	Close

次に、サブ回路 ≫ デフォルト変数リスト編集 から、デフォルト変数に変数LおよびCを追加してくだ さい。デフォルト変数リストからパラメータ情報を取得する素子として登録するために必要です。 デフォルト変数リストウィンドウが上図右側の通りに見えるはずです。

デフォルト変数リストウィンドウにおいて、"変数説明"にはパラメータの説明、"変数名"にはサブ回路 中でパラメータ名、"変数値"にはデフォルト値が表示されます。この例では、インダクタンス"L"について は、"変数説明"はInductance、"変数名"は"L"、"変数値"は"1m"です。また、キャパシタンス"C"について は、"Capacitance"、"C"、"100u"です。

作成したファイルを、PSIM フォルダ中の"lib"フォルダに保存してください。

<u>Step2: PSIM ライブラリへ素子を追加</u>

PSIMライブラリヘサブ回路素子を追加するためには、次の手順に従ってください。

- 編集 ≫ ライブラリ編集 ≫ ライブラリファイル編集から、新しい素子のためのカスタムイメージ ライブラリを選択してください。 新規のイメージライブラリを作る場合は、<u>新しいライブラリを作成</u>をクリックしてください。

- 既存のライブラリを使用する場合は、ライブラリを選択し、 選択したライブラリを編集 をク リックしてください。
- -ライブラリエディタでは、 新サブ回路素子 ボタンをクリックしてください。下図のダイアロ グが表示されますので、必要な情報を入力してください。

Subcircuit Elem	ient 🔀
Name	LC Filter
Description	LC Filter
Schematic File	D:\psim8.0.1\lib\LC_Filter.sch
Hide (menu	
Help File	LC_Filter.html
	Test Help Page
	OK Cancel

名前 説明 回路ファイル	PSIM ライブラリに示される素子名。 素子の説明。 サブ回路の回路図のファイル「LC_filter.sch」の位置。 サブ回路ファイルは PSIM フォルダの"\lib"フォルダに保存される 必要があります。
非表示(メニュー)	チェックを入れないでください。 この機能がチェックされていると、素子がライブラリに表示され ません。
ヘルプファイル	素子と関連付けされたオンラインヘルプファイル。 PSIM フォルダ内の"help"フォルダに保存してください。プロパテ ィダイアログの HELP ボタンがクリックされた際に、このファイ ルが表示されます。ファイルはテキスト形式か HTML 形式が使用 できます。

- イメージライブラリ保存およびメニュー変更ボタンをクリックしてください。新しい素子がライ ブラリに表示され使用することができます。

2.12.3 ライブラリヘ DLL 素子の追加

DLL で作成した素子を PSIM ライブラリに追加するための手順には、サブ回路の場合と同様に以下の 3 つのステップがあります。

- 素子モデルのDLLファイルを作成
- 素子をPSIMライブラリに追加
- 新規素子のオンラインヘルプを作成

インダクタを例に、DLL 素子の作成手順を説明します。

<u>Step1:DLLの作成</u>

まず、インダクタの DLL モデルを作成します。カスタム DLL の作成方法は関連セクションを参照して ください。

ここで、パラメータ "インダクタンス"および2つの接続ノードを持つ DLL モデル"inductor_model.dll"は 既に作成されており、ファイルは PSIM フォルダ中の"lib"フォルダに保存されているものとします。

<u>Step2: PSIM ライブラリへ素子を追加</u>

PSIMライブラリヘサブ回路素子を追加するためには、次の手順に従ってください。

- 編集 ≫ ライブラリ編集 ≫ ライブラリファイル編集から、新しい素子を選択してください。新 規のイメージライブラリを作る場合は、 新しいライブラリを作成 をクリックしてください。 既存のライブラリを使用する場合は、ライブラリを選択し、 選択したライブラリを編集 をク リックしてください。
- ライブラリエディタでは、 新しい素子(DLL) ボタンをクリックしてください。下図のダイア ログが表示されますので、必要な情報を入力してください。

DLL File Element	1	×
Name	Inductor (DLL)	ОК
Description	Inductor modeled in DLL	Cancel
File Path	psim8.0.1\lib\inductor_model.dll	
Input nodes	2	
Output nodes	0	
Hide (menu)		
Help File	inductor.html	
	Test Help Page	

名前 説明 DLL ファイルパス	PSIM ライブラリに示される素子名。 素子の説明。 DLL ファイル「inductor_model.dll」の位置。 DLL ファイルは PSIM フォルダの"\lib"フォルダに保存される必要 があります。
入力ノード	入力ノード数。
出力ノード	出力ノード数。
非表示(メニュー)	チェックを入れないでください。
	この機能がチェックされていると、素子がライブラリに表示され ません。
ヘルプファイル	素子と関連付けされたオンラインヘルプファイル。
	PSIM フォルダ内の"help"フォルダに保存してください。 プロパテ
	ィダイアログの HELP ボタンがクリックされた際に、 このファイ
	ルが表示されます。ファイルはテキスト形式か HTML 形式が使用
	できます。

- 次のダイアログウィンドウで、素子のサイズを設定してください(例: Width=5、Height = 2)。
 次いで、素子のイメージを新規作成もしくはデフォルトイメージを採用してください。
- イメージライブラリ保存およびメニュー変更ボタンをクリックしてください。新しい素子がライ ブラリに表示され使用することができます。

2.13 シンボルライブラリの作成

編集メニューの中の、イメージエディタ機能を使用することで、素子イメージを作成することができま す。作成した素子イメージは、PSIM ライブラリの二次イメージやサブ回路のイメージとして使用するこ とができます。また、イメージライブラリに保存し、回路上に図形描画する際に使用することもできま す。図形描画として使用した場合、シミュレーションには反映されません。 下図は、SPI、A/D 変換器からなるハードウェア回路図の例です。

F28335、74HCT138、および TLV1548 はすべてイメージエディタによって作成されています。

- イメージエディタの使用方法を、デコーダ 74HCT138 用イメージの作成を例に説明します。 - PSIMで新しい回路図を作成し、**編集 ≫ イメージェディタ**を選択します。表示される長方形を 回路図内の任意の位置に配置してください。長方形の表示を解除するためには<ESC>キーを押 してください。
 - 長方形の領域をダブルクリックするとダイアログウィンドウが表示されます。
 [メイン]タブでは、下図に示すパラメータを入力してください。
 "ライブラリ部品名"は、ライブラリ内で表示される素子名です。"幅""高さ"でブロックのサイズを指定します。端子を除いたサイズを指定します。この例では、"幅"=5、"高さ"=9としています。

Main Pins		
Part Description Location Library Part Name Part Name Name location Width Height Fill color Line color Line thickness Text color	74HCT138 Bottom - Left 74HCT138 (decoder) U2 Top - Left \$ <tr< th=""><th>Help Apply</th></tr<>	Help Apply
E	dit inside image	Save in library
		Save as in library

- [ピン]タブでは、ピンの追加や設定を行います。追加ボタンを押すとピンを追加することができます。ピンの場所、名前、ピンの番号を指定してください。点、クロック、負論理は以下の設定に対応します。この例では、チェックは入れないでください。

点 信号論理が負論理であることを示す〇印がブロックとピンの間に表示されま す。

- クロック クロック入力を示す>マークが表示されます。
- 負論理 信号論理が負論理であることを示すオーバーラインがピン名の上に表示されま す。
- 同様に追加ボタンを押して必要なピンを全て設定してください。

- ピンの設定が完了したら、[メイン]タブから ライブラリ名前付けて保存 を押して"新ライブ ラリ"を選択してください。ライブラリ名およびライブラリファイル名を指定してください。新 しい素子がライブラリに表示され使用することができます。

nage Main Pins	1						нер	×						
Pin color Names Numbers				Font Font			Apply							
	Location		Name	Number	Dot	dk	Overline							
x	1 - LEFT	•	A	1				ń						
x	2 - LEFT	•	В	2		Γ								
X	3 - LEFT	•	c	3				-						×
x	5 - LEFT	•	G2A	4	-		~							
X	6 - LEFT	•	G2B	5			-							Help
X	7 - LEFT	•	G1	6	_	2	-		• ••					Apply
X	1 - RIGHT	-	YO	15		2	-		—	Font			_	
X	2 - RIGHT	-	Y1	14		H	- -			Font				
<u>^</u>	J3 - RIGHT	-	JT2			-	_							
		_				_			Name	Number	Dot	dk O	verline	
						-	X 1-RIGHT	•	YO	15			_	1
						-	X 2 - RIGHT	•	Y1	14		-	-	
						-	X 3-RIGHT	•	Y2	13		_		
						-	X 4-RIGHT	•	IY3	12		-		Γ
						-	X 5-RIGHT	•	IY4	11 		-	-	
						-	V 6 - RIGHT	•	1T5	110		_		-
							X 8 - RIGHT	•	Y7	7	~			

第3章 SIMVIEW による波形処理

SIMVIEW は波形の表示とシミュレーション実行後のデータ処理をおこなうプログラムです。下の図は SIMVIEW により、波形を表示した例です。

SIMVIEW はデータを 専用フォーマットの他に ASCII テキストフォーマットで読み込むことができます。以下はデータファイルの例です。

3.1 ファイルメニュー

ファイルメニューの機能について説明します。 回路を開く ASCII テキスト形式(.txt)か、SIMVIEW 形式(.smv)のデータをファイル から読み込みます。 マージ 現在表示しているファイルに他のファイルを結合させます。 データを再ロード 現在表示しているファイルの元のデータを再度読み込みます。 名前を付けて保存 波形を保存します。ファイル形式は、SIMVIEW 形式、テキスト形式(Tab 区切り、カンマ区切り)から選択することができます。 SIMVIEW 形式での保存を選択すると、現在の設定も保存されます。 FFT 表示中は、FFT の結果をテキスト形式でユーザが指定した名前の ファイルに保存します。 波形を印刷します。 印刷 プリンタ設定 プリンタの設定を行います。 印刷ページ設定 ページ設定を行います。 印刷プレビュー 印刷プレビューを表示します。 終了 SIMVIEW を終了します。

ファイルから読み込んだデータを波形として表示中に、(新しいシミュレーションにより)同じファイル 名で内容が更新されたデータが得られた場合は、データを再ロードを選択することで新しいデータに基 づいて波形表示が更新されます。 マージ機能を使うことにより、複数のファイルから読み込んだデータを1つのファイルから読み込ん だように表示することができます。例えば、あるファイルが122の波形データを含み、別のファイル がV1とV2のデータを含んでいる場合、4つの波形を合成してひとつの画面に表示することができま す。後から読み込むファイルに同じ11という波形データがあった場合は、11_({file_name})というように 自動的に名称が変更されます。({file_name}にはファイル名が入ります)

3.2 編集メニュー

編集メニューの機能について説明します。

取り消し	X軸、Y軸の設定を戻します。
クリップボードにコピー	表示波形をクリップボードにコピーします。
	フォーマットはメタファイルフォーマット、ビットマップフォーマッ
	トから選択することができます。
データポイント表示	別ウィンドウが開き、表示範囲のデータをテキスト形式で表示します。
	領域を選択し、右クリックでコピーする内容を選択することで、データ
	をクリップボードヘコピーするこができます。

クリップボードにコピー機能は、表示している波形をクリップボードにコピーします。白黒表示でコピーする場合は、先に**オプション ≫ カラー**のチェックを外しください。

3.3 軸メニュー

軸メニューの機能について説明します。

 X軸
 X軸の設定を変更します。

 Y軸
 Y軸の設定を変更します。

 X軸変数を選択
 X軸として任意のデータ列を選定することができます。

 デフォルトではデータの最初の列、時間 time が X軸として選定されます。

X/Y 軸の設定ウィンドウは下図のように表示されます。

X-Axis
Scale Range Image Grid Division Image Image Image </th
OK Cancel

"Auto-Grid"にチェックが入っている場合、区切り位置は自動で決定されます。チェックを外すと手動で 設定することもできます。

下図は、X軸変数を選択機能で正弦波をX軸に設定し、Y軸には余弦波を選択した場合の表示波形です。

3.4 スクリーンメニュー

スクリーンメニューの機能について説明します。

新しいウィンドウ	アクティブ・ウィンドウを新たに追加できます。この機能は、新しいウ
	ィンドウで追加の波形を見るのに便利です。
曲線を追加/削除	選択された画面から波形を追加または削除します。
スクリーンを追加	新しい画面を追加します。
スクリーンを削除	選択された画面を削除します。
ベクトル図のプロット	ベクトル図をプロットします。ベクトルは時間軸プロットの変数リス
	トと同じ実部、虚部の値で定義されます。
フルスクリーンで表示	SimView ウィンドウをフルスクリーンにします。
上へ移動	選択したスクリーンを上に移動します。
下へ移動	選択したスクリーンを下に移動します。

スクリーンを選択するには、選択したいスクリーンを左クリックしてください。 曲線を追加/削除のダイアログ・ボックスを下に示します。

<u>[曲線を選択]タブ</u>

波形表示可能な変数は、左側の「利用可能な変数」のボックスに一覧表示されます。現在表示中の変数 は右側の「表示のための変数」のボックスにリストされています。「利用可能な変数」のボックスで変数を ハイライトしてから、「追加->」のボタンを押すと「表示のための変数」のボックスにこの変数が追加され ます。同様に、「表示のための変数」ボックスで変数をハイライトして <-- 削除 のボタンを押すと、その 変数を削除できます。

「Edit Box」では、「利用可能な変数」のボックスにリストされている変数をパラメータとして演算処理 を行うことができます。次の演算子および括弧を使うことができます。

+	加算	
-	減算	
*	乗算	
1	除算	
^	べき乗	例:2^3 = 2*2*2
SQRT	平方根	
SIN	正弦(サイン)	
COS	余弦(コサイン)	
TAN	正接(タンジェント)	
ATAN	逆正接(アークタンジェント)	
EXP	指数	例:EXP(x) = e^{x}
LOG	自然対数	LOG(x) = ln(x)
L0G10	常用対数	(基底 10)
ABS	絶対値	
SIGN	符号	例:SIGN(1.2) = 1; SIGN(-1.2) = -1
AVG	移動平均	
AVGX	周期平均	AVGX(<i>y, Tp</i>)は、曲線 y を区間 <i>Tp</i> ごとに平均値を算出します。
		例えば AVGX(V1,0.016667)は、曲線 V1 を 60Hz 間隔で平均を
		計算します。
INT	積分	

数式を「Edit Box」に入力し、 追加-> のボタンを押します。また、数式をハイライトし、 <- 削除 のボタンを押すと数式が「Edit Box」に表示されるので、数式を変更することができます。

<u>[曲線]タブ</u>

線の色、太さ、マーカーシンボル及びラベルなどの曲線特性を設定することができます。デフォルトの設定は SimView のオプション>>設定で定義されています。

1.0.41	Color	Line thickness	Marker symbol	Curve	^
I(L1)		1	No Symbol	I(L1)	
I(L2)		1	No Symbol	I(L2)	
IL1		1	No Symbol	IL1	
VL		1	No Symbol	VL	_
Vo1		1	No Symbol	Vo1	_
Vo2		1	No Symbol	Vo2	
Click on each cell to edit					

[スクリーン]タブ

文字表示色、背景色、グリッドカラーおよびフォントサイズ/タイプなどなスクリーン特性を設定することができます。

	Properties	
	Select Curves Curves Screen	
	Foreground color	
	Background color	
	Grid color Hide grid	
	Font ABC Hide existext	
		OK Cancel
- 1		

ベクトル図を描画する場合は最初にシミュレーションを実行します。それから SimView のスクリーン>> ベクトル図を描画 を選んでベクトルを定義します。次に範例の Script>>Files にある"2 vectors changing.psimsch"を使い説明します。

この回路の場合 V1 と V2 が実部と虚部としてあります。V1 の Amplitude は 1、V2 は 0.8 でベクトル V2 は V1 に対して 30° ずれています。

シミュレーション後に SimView でスクリーン>>ベクトル図の描画を選択します。ダイアログウィンド ウでV1、V2に対して実部、虚部として設定します。ダイアログウィンドウは次のようになります。

Variables available	Variables for display
V1imag V1real	
V2imag V2real	Add Imag. V1imag
	x
	Add Real V2real
	Add Imag. V2imag
	more
	U.S. C.
₽ ••×/	
+ * X /	

OK をクリックするとベクトルプロットが次の図の右側のように表示されます。時間軸に対する V1 と V2 の実部虚部の波形は左側のグラフとなります。

スラインディングバーがベクトルプロットの下の方にあります。マウス左ボタンでスライドさせるとベク トルプロットの描画が再現できます。パーセントは描画の最終位置に対するパーセントを表しています。 例えばこn例の場合は時間は0から0.0167秒までです。0%のスライドバーは0秒の時、100%では 0.0167秒となります。

3.5 測定 メニュー

測定メニューの機能について	て説明します。
測定	波形の値を表示します。
データポイントをマーク	選択された点のx軸、y軸の値を表示します。
極大値	選択された波形の全領域での最大値を求めます。
極小値	選択された波形の全領域での最小値を求めます。
次の極大値	選択された波形の近傍で次の最大値を求めます。
次の極小値	選択された波形の近傍で次の最小値を求めます。

測定機能を使用することで、表示波形上の値を計測することができます。**測定**機能を選択すると下図の ように「測定」ウィンドウが表示されます。グラフ上をクリックすると、カーソルラインが表示され計測 値が「測定」ウィンドウ内に表示されます。右クリックすると、別のカーソルラインが表示され、2つの カーソル間の差が表示されます。

測定機能が選択されている場合には、プルダウンバー Isb することができます。測定モードの場合に、極大値、極小値、次の極大値、次の極小値、平均、および RMS 機能を使用することもできます。

3.6 分析 メニュー

分析メニューの機能について説明します。

FFT を実行 時間領域での表示 平均(A) 絶対平均(x)	時間領域で表示中の波形の FFT 結果を表示します。 周波数領域で表示中の波形を時間領域の波形で表示します。 選択された波形の平均を計算します。 選択された波形の絶対値の平均を計算します。
RMS	選択された波形の実効値を計算します。
PF(力率)	グラフ内に表示された 2 つの波形の力率を計算します。この機能を使 用する場合には、グラフ内に 2 つの波形のみを表示させておく必要が あります。力率は cos θで表されます(θは 2 つの波形の位相差)。
P(有効電力)	グラフ内に表示された 2 つの波形の有効電力を計算します。この機能 を使用する場合には2つの波形のみを表示させておく必要があります。
S(皮相電力)	グラフ内に表示された 2 つの波形の皮相電力を計算します。この機能 を使用する場合には2つの波形のみを表示させておく必要があります。
高調波歪み(THD)	全高調波歪み(THD)を計算します。

これらのすべての機能は、現在グラフ上に表示されている時間範囲(x軸範囲)に適用されます。

FFT を実行機能により、時間領域の波形に含まれる高調波の振幅と位相を計算することができます。FFT

結果の位相を表示するには、グラフ上の任意の場所をダブルクリックするか曲線を追加/削除アイコン をクリックして下さい。[曲線を選択]タブで[角度]タブをクリックし、位相を選択します。位相の名称は、 単位が度(deg)の場合は Angle(D)_{name}、ラジアンの場合は Angle(R)_{name}となります(ここで{name}に は時間領域の波形の名称が入ります)。

正確な FFT 結果を得るには、シミュレーションが定常状態に収束した後、データが基本周期の整数倍に 収まるように X 軸の設定を調整してから FFT を実行してください(X 軸 の機能を使ってレンジを調整して ください)。例えば基本波の周波数が 60Hz の場合は、表示するデータの長さを 1/60 秒の整数倍にする必要 があります。

3.7 表示メニュー

表示メニューの機能について説明します。

ズーム	選択された範囲を拡大表示します
再描画	波形を再表示します。倍率は自動で調整されます。
脱出	ズームまたは測定モードから復帰します。
標準ツールバー	標準ツールバーの表示を有効・無効にします。
測定ツールバー	測定ツールバーの表示を有効・無効にします。
ステータスパー	ステータスバーの表示を有効・無効にします。
電卓	Simview の電卓を起動します。

電卓のインターフェース画面は以下の通りです。

電卓インターフェースは、9個のメモリスペースを備えています。

測定ウィンドウ中で、計測値をダブルクリックすることで、値を電卓のメモリにコピーすることができます。

3.8 オプションメニュー

オプションメニューの機能について説明します。

オプション	"新しいデータをロードする際に、x 軸を再描画"をチェックすると、デ
	ータを再読み込みした際に x 軸の範囲設定を新しいデータのものを反
	映します。
	"右マウスボタン操作"では右クリックしたときの動作を選択できます。
グリッド	グリッドを表示・消去します。
カラー	波形の色を多色(Color;デフォルト), 黒(Black)、または白(White)に切
	り替えます。

[オプション]ダイアログウィンドウを以下に示します。

	Default curve settings	
 Redraw x-axis when loading new data 	Curve Color Line thickn Marker symb	^
L. Showwarming for invalid points	1 1 No Symbol	
 Show warning for invalid points 	2 1 No Symbol	
Engineering Unit	3 1 No Symbol	
	4 I No Symbol	
Significant Digits	6 1 No Symbol	
	7 1 No Symbol	~
Right mouse action	Default text item settings	
Show menu	Font ABC	
C Pan	Vertical text	
C Zoom	Justification Center	

デフォルト曲線設定は曲線の色、線の太さ、およびマークのシンボルなどが定義されています。また、デフォルトのテキスト設定はフォント、サイズ、色などが定義されています。

「Redraw x-axis when loading new data(新しいデータを読み込む際に x 軸を再描画)」にチェックを入れると新しいデータを読み込んだ際に X 軸を再描画します。この設定にチェックが入っていない場合、X 軸の範囲は再描画されません。

「Engineering Unit(工学単位)」にチェックが入っている場合、「測定」ダイアログウィンドウで数値が u,m,k,M などを使用して表示されます。(例えば 12.3456u)チェックされていない場合は、科学的な単位で表示されます(例えば、1.23456e-5)。

有効数字の値は小数点以下の桁数を定義します。

右マウス操作は、「メニューを表示」、「パン」、または「ズーム」のいずれかに設定することができます。

3.9 ラベル メニュー

ラベルメニューの機能について説明します。

文字を画像に追加します。
線を引きます。
点線を引きます。
矢印のついた線を引きます。

線を引くには、**ラベル ≫ 線**を選択してください。線の始点でマウスの左ボタンを押し、そのままマウス をドラッグします。点線や矢印線も同様に描くことができます。

現在のモードが**ズーム**または**測定**モードの場合は、表示メニューの脱出を選択し、これらのモードから 復帰してから文字またはラベルを編集してください。

3.10 設定 メニュー

設定メニューの機能について説明します。

設定を再ロード	.ini ファイルから設定を再読み込みし、現在の表示に適用します。
設定を保存	現在の設定を.ini ファイルに保存します。
一時的な設定を保存	現在の設定を一時的に保存します。一時設定は他のファイルには適用
	されず、ファイルを閉じると無効になります。
一時的な設定をロード	一時設定を読み込み、現在の表示に適用します。
お気に入りに追加	現在の設定をお気に入りに登録します。お気に入りに登録するとき、線
	の色や太さ、テキストフォント、Log/dB/FFT 表示設定、x 軸と y 軸の
	幅の保存が選択できます。
お気に入りを管理	お気に入りを管理します。

SIMVIEW がデータファイル(.txt または.smv ファイル)を読み込むとき、対応する.ini ファイルが存在する 場合はこの設定を自動的に読み込みます。

ー時的な設定をロードと一時的な設定を保存の機能は設定を一時的に保存したい場合に使います。例として、一つの波形を他の波形と比較したい場合、ユーザは最初の波形を表示している時に"一時保存"を選択します。その後、2つ目の波形を表示させる際、一時設定を適用します。

お気に入りは、グラフ設定を後で使用するために保存しておくのに有用な機能です。例として、SIMVIEW が2つのスクリーンを表示する場合を考えます。上のスクリーンでは V1 を赤色で、特定の x 軸、y 軸幅で 表示させていて、下のスクリーンでは V2 を青色で特定の y 軸幅で表示させています。この設定を再度使い たい場合は、この設定をお気に入りに登録し、後で使用することができます。

現在の表示をお気に入りに登録する際は、設定メニューのお気に入りを選択して下さい。お気に入りに 登録するときは、現在表示しているスクリーンの番号とお気に入りのスクリーン番号を一致させる必要が あることに注意して下さい。

3.11 データの書き出し

「FFT」の結果はテキストファイルに保存できます。シミュレーション結果(*.txt)と「FFT」の結果(*.fft) が両方ともテキスト形式で保存できるので、テキストエディタもしくは他のソフトウェア(Microsoft Excel など)で読み込むことができます。たとえば、Excel では、データファイルを開くことにより、データは自 動的に表形式に変換されます。

Microsoft の Excel でファイルを読み込む場合には、ファイル ≫ 開くを選択し、「テキストファイルウィザード」ダイアログに従ってファイルを読み込んでください。

第4章 電気回路素子

本章では、PSIM ライブラリエレメントの電気回路素子について詳細を説明します。

4.1 抵抗-インダクタ-キャパシタ(Resistor-Inductor-Capacitor Branches)

PSIM エレメントライブラリでは、抵抗(Resistor)、インダクタ(Inductor)、キャパシタ (Capacitor)それぞれ単体の素子、及びこれらを組み合わせた素子が用意されています。

- 単体の抵抗、インダクタ、キャパシタ。これらはマルチレベルモデルが用意されています。
 レベル1は基本素子、レベル2では寄生容量、漏れ電流などが含まれます。
- 抵抗、インダクタ、キャパシタの直列接続によるブランチ
- 抵抗、インダクタ、キャパシタおよびこれらの組み合わせによる対称三相ブランチ インダクタの初期電流およびキャパシタの初期電圧を設定することができます。ただし、三相 ブランチ素子については、初期値はいずれも0となります。

4.1.1 抵抗 (Individual Resistor)

イメージ

|--|

レベル1モデルの仕様

パラメータ	機能
抵抗	抵抗(Ω)
電流フラグ	電流波形出カフラグ このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された 端子が入力となる方向の電流値が正の値となります。

レベル2モデルの仕様

パラメータ	機能
抵抗	抵抗(Ω)
定格電圧	定格電圧値(V)
電力定格	定格電力(W)
インダクタンス ESL	等価直列インダクタンス(Equivalent Series L : ESL) (H)
並列容量	等価寄生容量(F)
電流フラグ	電流波形出力フラグ このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された 端子が入力となる方向の電流値が正の値となります。

等価回路

Level 1 Model	Level 2 Model
	· CP Parallel Capacitance

4.1.2 インダクタ (Individual Inductor)

シンボル

<u>ം സസം</u>		
パラメータ	機能	
インダクタンス	インダクタンス(H)	
初期インダクタンス 電流	初期電流値(A)	
電流フラグ	電流波形出カフラグ このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された 端子が入力となる方向の電流値が正の値となります。	

レベル2モデルの仕様

パラメータ	機能
インダクタンス	インダクタンス(H)
ピーク定格電流	最大定格電流(A)
直列抵抗	等価直列抵抗值(Equivalent Series Resistance : ESR)(Ω)
並列抵抗	並列漏れ抵抗値(Ω)
並列容量	等価寄生容量(F)
初期インダクタンス 電流	初期電流値(A)
電流フラグ	電流波形出カフラグ このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された 端子が入力となる方向の電流値が正の値となります。

等価回路

Level 1 Model	Level 2 Model
<u></u>	CP Resistance Parallel Capacitance

4.1.3 キャパシタ(Individual and Electrolytic Capacitors)

シンボル

	Capacitor Capacitor (Electrolytic)
	° -
レベル1モデルの仕様	
パラメータ	機 能
キャパシタンス	キャパシタンス(F)
初期コンデンサ電圧	初期電圧値(V)
	電流波形出力フラグ
雷流フラグ	このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、
	SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された
	端子が入力となる方向の電流値が正の値となります。
レベル2モデルの仕様	
パラメータ	機 能
キャパシタンス	キャパシタンス(F)
定格電圧	定格電圧値(V)
実効定格電流	定格電流実効値(A)
抵抗 ESR	等価直列抵抗值(Equivalent Series Resistance : ESR) (Ω)
インダクタンス ESL	等価直列インダクタンス(Equivalent Series L : ESL) (H)
漏れ抵抗	漏れ電流抵抗値(Ω)
初期コンデンサ電圧	初期電圧(V)
電流フラグ	電流波形出カフラグ このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された 端子が入力となる方向の電流値が正の値となります。

等価回路

	Level 1 Model	Level 2 Model
Capacitor	° [*] −] −−− °	Parallel Resistance
Capacitor (Electrolytic)	o <u>*</u>](o	Parallel Resistance

4.1.4 複合 RLC ブランチ(Combined R-L-C Branch)

シンボル

L	L+¥.
בר	[17]

- ነ ጥ		
パラメータ	機能	
抵抗	抵抗(Ω)	
インダクタンス	インダクタンス(H)	
キャパシタンス	キャパシタンス(F)	
初期インダクタンス 電流	初期電流値(A)	
初期キャパシタンス 電圧	キャパシタ初期電圧値(V)	
電流フラグ	電流波形出カフラグ このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された 端子が入力となる方向の電流値が正の値となります。	

注意:複合 RLC ブランチの R, L, C の少なくとも一つは 0 以外のパラメータを持つ必要があり ます。

4.1.5 三相抵抗、インダクタ、キャパシタ、複合ブランチ(Three-Phase R, L, C, and Combination Branches)

シンボル

R3	L3	C3	RL3	RC3	RLC3	
•///•	<u>.</u>	° - °	ഀ൜൜	⊶∕∖∕–ի⊷	⊶∿∿∽ч⊢₀	
•-///-•		∘ ∘	<u>مرمر</u>	⊶∕∕ -•	⊶∿∕∽∽⊣⊢₀	
•-///-•	<u> </u>	o	<u>مرکب</u>	⊶∖∖ -•	⊶∕∖-∽-⊣⊢₀	

仕様

パラメータ	機能
抵抗	抵抗(Ω)
インダクタンス	インダクタンス(H)
キャパシタンス	キャパシタンス(F)
電流フラグ_A	それぞれ三相ブランチの相 A、B、C 電流波形出力フラグ
電流フラグ_B	このフラグが 1 に設定された場合、この素子を流れる電流値は記録され、 SIMVIEW およびランタイムグラフ上に表示されます。ドットにて指定された
電流フラグ_C	端子が入力となる方向の電流値が正の値となります。

4.1.6 三相 AC ケーブル(3-Phase AC Cable)

三相 AC ケーブルのモデルは、誘導結合と相の間の容量が考慮されます。 シンボル

А	÷A	, ∂	а
в	d-al	t=+••	b
С	o ∖a∫	क≁∘	с
N		<u>~</u>	n

L	L-1#
T	「村蚕」

11 7	
パラメータ	機能
ケーブル長さ	ケーブルの長さ(m)
動作周波数	ケーブルの動作周波数(Hz)
正相抵抗 Rd	ケーブル正相抵抗(Ω)
正相リアクタンス Xd	ケーブル正相リアクタンス(Ω/km)
正相キャパシタンス Cd	ケーブル正相キャパシタンス(F/km)
零相抵抗 R ₀	ケーブル零相抵抗(Ω)
零相リアクタンス Xo	ケーブル零相リアクタンス(Ω/km)
零相キャパシタンス Co	ケーブル零相キャパシタンス(F/km)

画像では、ケーブルの両側の下部のノード N または n はケーブルの皮膜です。一般的にケーブルのグランドに接続されています。

ケーブルパラメータは、メーカのデータシートから入手できるはずです。それらが利用できない場合、 ケーブルの各相は、Rの抵抗、Lの自己インダクタンス、および Mの相互インダクタンスを持ち、正相お よび零相のパラメータは次のように計算することができると仮定します。

$$R_{d} = R$$
$$X_{d} = \omega \cdot (L - M)$$
$$R_{0} = R$$
$$X_{0} = \omega \cdot (L + 2M)$$

ここで、 $\omega=2\pi f$ で、fは動作周波数(Hz)になります。

4.1.7 レオスタット(Rheostat)

レオスタット(Rheostat)はタップ付きの抵抗器です。

シンボル

 $\wedge \wedge m$

仕様

パラメータ	機能
全抵抗	全抵抗(Ω)端子 k から端子 m までの抵抗(Ω)
タップ位置	タップ位置(0~1)端子 k から t までの抵抗は R*Tap
電流フラグ	電流出力のフラグ

4.1.8 可飽和リアクトル(Saturable Inductor)

可飽和リアクトル(Saturable Inductor)はインダクタの鉄心の飽和を反映できます。

シンボル

11	
T	**

パラメータ	機能
電流対インダクタンス	電流対インダクタンス特性 (i1, L1), (i2, L2), …のように指定
電流フラグ	端子kに流れ込む電流のフラグ

非線形の B-H 曲線は区分線形特性で近似します。磁束密度 B は鎖交磁束 A に比例し、磁化力 H は電流に 比例するので、B-H 曲線は以下に示すように A - i 曲線で等価に表すことができます。

インダクタンスは $L=\lambda/i$ で求められ、これは $\lambda - i$ 曲線の傾斜に相当します。したがって、飽和特性は異なる点のデータの対を(*i*₁, *L*₁), (*i*₂, *L*₂), (*i*₃, *L*₃), などのように指定することにより表現できます。

λは $iの増加に伴って、L_1*i_1 < L_2*i_2 < L_3*i_3$ のように単調に増加する必要があります。同様に、実際の飽和 特性では $\lambda - I$ 特性の各区間の傾きは電流の増加に伴って単調に減少するべきです。

条件によっては可飽和リアクトルを含むシミュレーションは収束しない場合があります。そのような場 合、可飽和リアクトルと並列に微小なコンデンサを接続してみてください。

4.1.9 相互結合インダクタ(Coupled Inductors)

PSIM では、2から6までのブランチ、5種類の相互結合インダクタが提供されています。 シンボル

上図シンボルでは、○がインダクタ1、□が2、△が3、+が4、×が5、*が6の入力端子を示します。

仕様

パラメータ	機能
Lii(自己)	インダクタ <i>i</i> の自己インダクタンス(H)
L _{ii} (相互)	インダクタ <i>i</i> と <i>j</i> の間の相互インダクタンス(H)
初期電流 i	インダクタ <i>i</i> の初期電流(A)
電流フラグ_i	インダクタ i の電流出カフラグ

下図には2ブランチの相互結合インダクタを示しています。

$$i_1 + v_1$$

L₁₁とL₂₂をそれぞれブランチ1と2の自己インダクタンス、またL₁₂とL₂₁をそれぞれ相互インダクタンスとします。するとブランチ電圧と電流には以下のような関係になります。2巻線間の相互インダクタンスは常に等しい(L₁₂=L₂₁)と仮定しています。

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} L_{11}L_{12} \\ L_{21}L_{22} \end{bmatrix} \cdot \frac{d}{dt} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

SPICE では、相互結合インダクタは、自己インダクタンスと相互結合係数により定義されています。2つのブランチのある相互結合インダクタでは、相互結合係数Kは、以下のように定義されています。

$$K = \frac{L_{12}}{\sqrt{L_{11} \cdot L_{22}}}$$

この場合、相互インダクタンスは、以下のように計算されます。

$$L_{12} = K \cdot \sqrt{L_{11} \cdot L_{12}}$$

相互結合係数は、0から1の間の値となります。相互結合係数が1の時、完全に相互結合されていることを意味します。ただし、PSIMにおいては、完全な相互結合は許容されていません。よって、相互結合が1になることはあり得ません。

また、漏れインダクタンスが無視された場合、すなわち相互結合係数が1に近い場合は、自己インダク タンスは巻数比の二乗に比例します。よって、ブランチ1がN1の巻き数を持ち、ブランチ2がN2の巻き 数を持っている場合、以下のようになります。

$$\frac{L_1}{L_2} = \frac{N_1^2}{N_2^2}$$

例

相互結合インダクタが L₁₁=1mH、L₂₂=1.1mH、L₁₂=L₂₁=0.9mH のような自己インダクタンスと相互イン ダクタンスを持っているとします。結合係数は K=0.86 です。この素子の仕様は以下のようになります。

L11(自己)	1m
L ₁₂ (相互)	0.9m
L22(自己)	1.1m

4.1.10 非線形素子(Nonlinear Elements)

電圧 - 電流の非線形特性を表現する素子(Nonlinear Elements)は以下の 4 つが用意されています。
 抵抗型(NONV)[v = f (i)]
 追加入力 x 付き抵抗型(NONV_1)[v = f (i, x)]
 コンダクタンス型(NONI)[i = f (v)]
 追加入力 x 付きコンダクタンス型(NONI_1)[i = f (v, x)]
 追加入力 x 付きコンダクタンス型(NONI_1)[i = f (v, x)]

シンボル

Nonlinear element	Nonlinear element (with additional input)
°~~~	j Input x

仕様

抵抗型素子の場合

パラメータ	機能
関数	電流 i(と任意パラメータ x)から求められる電圧値関数
微分関数 df/di	電流に関する電圧の微分式
初期值 i。	電流 <i>i</i> の初期値
下限值 <i>i</i>	電流 <i>i</i> の下限値
上限值 <i>i</i>	電流 <i>i</i> の上限値

コンダクタンス型素子の場合

パラメータ	機能
関数	電圧 v(と任意パラメータ x)から求められる電流値関数
微分関数 df/dv	電圧に関する電流の微分式
初期值 vo	電圧 v の初期値
下限值 v	電圧 v の下限値
上限值 v	電圧vの上限値

電圧/電流の初期値および上下限値を適切に設定することで、解の収束を得やすくなります。

例:非線形ダイオード

上の回路で、非線形素子(NONI)が非線形ダイオードを模擬しています。ダイオードの電流は電圧の関数 で *i* = 10^{-14*}(e^{40*v}-1) と与えています。

PSIM ではこの非線形素子の特性は以下のように指定します。

関数 <i>f</i> (v)	1e-14*(EXP(40*v)-1)
微分関数 df/dv	40e-14*EXP(40*v)
初期値 <i>v</i> ₀	0
下限值 v	-1000
上限值 v	1

4.2 スイッチ(Switching Devices)

PSIMのスイッチ素子には2つのタイプがあります。ひとつはスイッチモード素子で、遮断(オフ)または 飽和(オン)のいずれかの状態で動作するもの。もうひとつは線形スイッチ素子で、遮断・線形・飽和のいず れかの領域で動作します。

スイッチモード素子には次のようなスイッチがあります。 ・ダイオード、ダイアック(DIODE/DIAC) ・サイリスタ、トライアック(THY/TRIAC)

- ・自己転流スイッチ
 - npn および pnp トランジスタ(npn/pnp Transistor)
 - IGBT(IGBT)
 - n 型および p 型 MOSFET
 - n 型および p 型 MOSFET(ジャンクション温度 考慮モデル)
 - Gate Turn-Off サイリスタ(GTO)
- ・双方向スイッチ

スイッチモデルは理想型で、オンオフ時の過渡動作は無視されます。

スイッチは 10μΩ のオン抵抗を持ちます。スイッチと並列接続されている R,L,C が全く無い場合、10MΩ の抵抗がスイッチの内部を横切って接続されていることになります。この抵抗はオフ抵抗としてみることができます。この抵抗を変更したい時、例えばオフ抵抗を 100MΩに変更するには、100MΩの抵抗をスイッチと並列に接続してください。PSIM は既にスイッチに並列な抵抗が存在すると認識し、10MΩの抵抗を 加えることはしません。

スナバ回路は必要としません。

線形スイッチ素子には以下のタイプがあります。

npn バイポーラ接合トランジスタ (npn Transistor(3-state)) pnp バイポーラ接合トランジスタ (pnp Transistor(3-state)) n-チャネル MOSFET (MOSFET(3-state))

p-チャネル MOSFET (p-MOSFET(3-state))

4.2.1 ダイオード(Diode)

ダイオードや LED の導通は回路操作条件によって決定されます。PSIM のダイオードは2つのモデルレベルが用意されています。

- レベル1モデル:ダイオードは閾値電圧を超えて正方向にバイアスされるとオンし、電流が0になるとオフします。
- レベル2モデル:リード線の寄生インダクタンスおよび逆回復時間も考慮されます。

シンボル

+ v -⊶D+-∘

レベル1モデルの仕様

パラメータ	機能
順方向電圧	ダイオードの順電圧閾値(Vd_th)(V)。 正のバイアス電圧が Vd_th 以上になると、 ダイオードが導通します。
抵抗	導通時のダイオード抵抗値 Rd(Ω)
初期状態	ダイオード初期状態フラグ(1:オン;0:オフ)
電流フラグ	電流波形出力フラグ

レベル2モデルの仕様

パラメータ	機能
順方向電圧	ダイオードの順電圧閾値(Vd_th)(V)。正のバイアス電圧が Vd_th 以上になると、 ダイオードが導通します。
抵抗	導通時のダイオード抵抗値 Rd(Ω)
直列インダクタンス	ダイオードの寄生インダクタンス(H)
並列電気容量	ダイオードのアノードとカソード間の並列電気容量(F)。容量値が 0 の場合は、コンデンサは無視され、シミュレーションから除去され ます。
順方向電流	逆回復特性を測定するための試験条件下における順方向電流 <i>lfwd</i> (A)
逆方向ピーク電流	試験条件下での逆ピーク電流(A)
電流スロープ	逆回復特性を測定するための試験条件下における電流勾配 dl/dt (A/sec)
逆回復時間定数	逆回復時間定数 <i>Trr</i> (sec) (ダイオード i-v 特性参照)
初期状態	ダイオード初期状態フラグ(1:オン;0:オフ)
電流フラグ	電流波形出力フラグ

ダイオード i-v 特性

ダイオードレベル2モデル逆回復パラメータ定義

逆回復時間 trr は ta および tb に分かれます。 ta の期間では電流値は 0 からーIrm まで直線的に 変化します。 tb は JEDEC(Joint Electron Device Engineering Council)によると、上図のようにー Irm から-0.25*Irm までの直線が時間軸と交差するまでの期間と定義されています。

ダイオードの Level-2 モデルに関する詳細は、"Tutorial - Diode model with reverse recovery.pdf" を参照ください。

4.2.2 発光ダイオード(LED)

発光ダイオード(LED)は、通電により発光します。発光ダイオードの i-v 特性はダイオードの レベル1モデルと同様です。

シンボル

+ v -
⊶⊴→
55

仕様

パラメータ	機能
順方向電圧	ダイオードの順電圧閾値(Vd_th)(V)。正のバイアス電圧が Vd_th 以上になると、 LED が導通します。
抵抗	導通時のダイオード抵抗値 R₀(Ω)
初期状態	ダイオード初期状態フラグ(1:オン;0:オフ)
電流フラグ	電流波形出力フラグ

4.2.3 ツェナーダイオード、ダイアック(Zener Diode and DIAC)

<u>ツェナーダイオード(Zener)</u>

PSIMのツェナーダイオードは以下に示すような回路によりモデル化されています。 シンボル

仕様

パラメータ	機能
ブレイク電圧	ツェナーダイオードのブレイク電圧(V _B)(V)
順方向閾値電圧	順方向の閾値電圧(アノードからカソード間)(V)
順方向抵抗	順方向のオン抵抗(Ω)
電流フラグ	ツェナーダイオードの電流フラグ(アノードからカソード方向)

ツェナーダイオードが順方向にバイアスされた場合は、通常のダイオードとして動作します。逆方向に バイアスされた場合は、カソード電圧 VKA がブレイク電圧 VB 以下である限り、導通を阻止します。電圧 VKA が VB より高い場合には、電圧 VKA が VB にクランプされます。ツェナーダイオードがクランプすると、 ダイオードのオン抵抗が 10μΩ なので、カソードーアノード間の電圧は実際には VKA=VB+10μΩ* IKA とな り、IKA の値によって VKA は VB よりも少し高くなります。電流 IKA が非常に大きい場合は、電圧 VKA は VB よりもかなり高くなる可能性があります。

<u>ダイアック(DIAC)</u>

ダイアック(DIAC)は双方向性のダイオードです。ダイアックはブレイクオーバー(breakover)電圧がかか るまで導通しません。DIAC が導通するようになったあとの電圧はブレイクバック(breakback)電圧と呼ば れます。

シンボル

仕様

パラメータ	機能	
ブレイクオーバー電圧	DIAC が導通を始める電圧(V)	
ブレイクバック電圧	導通時電圧降下(V)	
ブレイクオーバー電流	デバイスが導通を停止しない最小電流(A)	
電流フラグ	DIAC の電流フラグ	

4.2.4 サイリスタ・トライアック(Thyristor and TRIAC)

サイリスタはターンオンが制御できます。ターンオフは回路条件で決定されます。 トライアックは両方向に電流を流すことができるサイリスタです。トライアックは逆向きの2つのサイ リスタが並列接続された構造をしています。

シンボル

Thyristor	TRIAC	
A o K Gate	• (S) •	
	Gate	

仕様

パラメータ	機能
電圧降下	サイリスタ導通時電圧降下(V)
最小導通電流	サイリスタの最小導通電流(A);電流がこの値以下になるとサイリスタの状態は OFF になります(サイリスタのみに適用)。
最小電流	サイリスタを ON 状態に保つ最小電流(サイリスタのみに適用)(A)。
初期状態	スイッチ初期状態フラグ(サイリスタのみに適用)
電流フラグ	スイッチ電流出力フラグ

TRIAC の最小導通電流と最小電流はいずれもゼロです。

サイリスタおよび TRIAC を制御するには 2 つの方法があります。一つはゲート・ブロック(GATING)を 使用するか、スイッチコントローラを使用します。サイリスタまたは TRIAC のゲートノードにはこれらの いずれかに接続されていなければなりません。

左側の回路はスイッチ・ゲート信号ブロックを使っています。スイッチング・ゲートパターンと周波数 はシミュレーション開始前に設定し、シミュレーション中に変化することはありません。右側の回路は点 弧角制御器を使っています。遅れ角 α(度)は回路の直流電圧源により指定されます。
4.2.5 トランジスタ(Transistor)

バイポーラ・ジャンクション・トランジスタ(BJT)モデルは理想スイッチングデバイスとして 動作するため、実際のデバイスの動作とは若干異なります。バイポーラ・ジャンクション・トラ ンジスタスイッチは逆電圧を遮断します(GTOと同様の動作)。この際、ゲートノードの電流では なく、電圧により制御されます。

ゲート信号が論理的に正状態(ゲート電圧が 1V またはそれ以上の場合)、かつスイッチが正に バイアス(コレクタ・エミッタ間電圧が正)された場合に、npn トランジスタはオン状態となりま す。ゲート信号が論理的に負状態、かつスイッチが負にバイアス(コレクタ・エミッタ間電圧が 負)された場合に、pnp トランジスタはオン状態となります。 シンボル

仕様(npn および pnp BJT)

パラメータ	機能
飽和電圧	飽和電圧 Vce_sat(npn の場合)または Vec_sat(pnp の場合)(V)
初期状態	スイッチ初期状態フラグ(0:オフ、1:オン)
電流フラグ	スイッチ電流出力フラグ(0:非表示、1:表示)

例:npn バイポーラ接合トランジスタ(BJT)の制御

左側の回路はスイッチ・ゲート信号ブロックを、右側の回路はオンオフ・スイッチ・コントローラを使用しています。右側の回路のように、制御回路からの信号によりスイッチングする場合は、オンオフ・スイッチ・コントローラをゲートノードに配置する必要があります。

以下の例は npn スイッチを制御するもうひとつの例です。左の回路は実際の回路での npn スイッチを制御する接続を示します。この場合、ゲート電圧 VB を、変圧器を介してトランジスタのベース駆動回路に加えると、ベース電流がトランジスタの導通状態を決めます。

PSIM ではこれを右のように構成します。ダイオード D_{be} を使ってベース-エミッタ間 0.7V の電圧降下 を表現しています。ベース電流が 0(もしくは一定の閾値:この場合、ベース電流は直流電源と比べます)を 越えると、比較器の出力が 1 になり、オンオフ・スイッチ・コントローラを介してトランジスタにターン オン・パルスを加えます。

4.2.6 MOSFET

MOSFET スイッチは逆方向に接続されたダイオードとスイッチから構成されます。ゲート信号が論理的に正状態(ゲート電圧が 1V またはそれ以上の場合)、かつスイッチが正にバイアス(ドレイン・ソース間電圧が正)された場合に、MOSFET はオン状態となります。ゲート信号が負の状態、または電流が0になるとオフ状態となります。

P チャンネル MOSFET は、ゲート信号が論理的に負状態、かつスイッチが負にバイアス(ドレイン・ソース間電圧が負)された場合にオン状態となります。

MOSFET スイッチの MOSFET(RDS_(on))と p-MOSFET(RDS_(on))は接合温度の関数としてオン抵抗を持っ ています。シンボルにおけるゲート端子の上部に位置する端子により、ジャンクション温度が定義されま す。その端子に入力される電圧値により、ジャンクション温度 Tj(℃)が定義されます。例えば、25V が与え られると、25℃と定義されます。オン抵抗は下記の式により定義されます。

 $R_{DS(ON)} = R_{DS(ON)_{b}} \cdot (1 + K_T \cdot (T_j - T_{j_{b}}))$

自己転流スイッチはゲート・ブロック(GATING)かスイッチコントローラのいずれかで制御されます。こ れらはスイッチのゲート(ベース)ノードに接続されていなければなりません。 シンボル

仕様(MOSFET および p-MOSFET)

	/
パラメータ	機能
オン抵抗	MOSFET のオン抵抗 R _{ds_on} (Ω)
閾値電圧	逆並列ダイオード閾値電圧(V)
ダイオード抵抗	逆並列ダイオードのオン抵抗(Ω)
初期状態	スイッチ初期状態フラグ(0:オフ、1:オン)
電流フラグ	スイッチ電流出力フラグ(0:非表示、1:表示)

仕様(MOSFET(RDS(on)および p-MOSFET(RDS(on)))

パラメータ	機能
試験時温度 Tj	試験時のジャンクション温度 T _⊥ ₀(℃)
試験時抵抗	試験時のオン抵抗 $R_{ds_{on}}(\Omega)$
温度係数	オン抵抗の温度係数(1/°C)
閾値電圧	逆並列ダイオード閾値電圧(V)
ダイオード抵抗	逆並列ダイオードのオン抵抗(Ω)
初期状態	スイッチ初期状態フラグ(0:オフ、1:オン)
電流フラグ	スイッチ電流出力フラグ(0:非表示、1:表示)

例:MOSFET スイッチの制御

を側の回路はゲートブロックを使用し、右側の回路はオンオフ制御器を使用します。ゲート信号は比較 器の出力で決定されます。

4.2.7 絶縁ゲートバイポーラトランジスタ(IGBT)

IGBT スイッチは逆接続されたダイオードとスイッチから構成されます。ゲート信号が論理的 に正状態(ゲート電圧が 1V またはそれ以上の場合)、かつスイッチが正にバイアス(コレクタ・エ ミッタ間電圧が正)された場合にオン状態となります。ゲート信号が負の状態、または電流が 0 になるとオフ状態となります。

シンボル

仕様

第4章 電気回路素子

パラメータ	機能
飽和電圧	IGBT の飽和電圧 V _{ce_sat} (V)
トランジスタ抵抗	トランジスタのオン抵抗(Ω)
閾値電圧	逆並列ダイオード順方向閾値電圧(V)
ダイオード抵抗	逆並列ダイオードのオン抵抗(Ω)
初期状態	スイッチ初期状態フラグ(0:オフ、1:オン)
電流フラグ	スイッチ電流出カフラグ(0:非表示、1:表示)

4.2.8 逆阻止 IGBT(IGBT-RB)

IGBT-RB スイッチは、逆阻止能力を持ち、逆並列ダイオードなしのアクティブなスイッチで 構成されています。

スイッチが正に(コレクタ-エミッタ間電圧が正)にバイアスされている場合、ゲート信号が High のとき(1V の電圧以上のゲートノードに印加された場合)オンします。

ゲート信号が Low であるか、電流がゼロに低下するとスイッチはオフになります。 IGBT-RB は単一のスイッチおよびデュアルパッケージの2つが用意されています。

シンボル

仕様

パラメータ	機能
飽和電圧	IGBT の飽和電圧 Vce_sat (V)
トランジスタ抵抗	トランジスタのオン抵抗(Ω)
初期状態	スイッチの初期状態フラグ(0:オフ、1:オン) デュアルパッケージの想合けスイッチュークを回じ訳字
初期 八郎 または Z	ナユアルハッケーンの場合はスイッナー、2 を別に設定
電流ノフク	スイッナモンユール主体(アユアルの場合は2つ)の電流フラク

デュアルパッケージの場合、素子を直立に配置した場合、左側にあるスイッチが1、右側にあるスイッチが2です。

4.2.9 ゲートターンオフサイリスタ(GTO)

GTO スイッチは正方向と逆方向の両方の阻止能力を持った対称素子です。 シンボル

仕様

パラメータ	機能
電圧降下	GTO 導通電圧降下(V)
初期状態	スイッチ初期状態フラグ(0:オフ、1:オン)
電流フラグ	スイッチ電流出カフラグ(0:非表示、1:表示)

4.2.10 双方向スイッチ(Bi-Directional Switches)

双方向スイッチは両方向に電流を流すことができます。PSIM ではシングルスイッチ、三相スイッチ及び プッシュボタンスイッチの3タイプの双方向スイッチを用意しています。 シンボル

仕様

パラメータ	機能
初期状態	スイッチ初期状態フラグ(シングルスイッチのみ)
初期状態(A/B/C 各相)	三相スイッチの A・B・C 相の初期状態フラグ
スイッチ状態	プッシュボタンのスイッチ状態(オンかオフ)
電流フラグ	スイッチ電流フラグ(シングルスイッチのみ)
電流フラグ(A/B/C 各相)	A・B・C 相のスイッチ電流フラグ

三相スイッチのイメージで、ドット付スイッチがA相です。シングルスイッチ及び三相双方向のスイッ チに関しては、電圧バイアス状態にかかわらず、ゲート信号がHighの時オンであり、ゲート信号がLowの 時オフです。プッシュボタンスイッチにおいて、スイッチ状態はパラメータ入力で設定されます。

4.2.11 線形スイッチ(Linear Switches)

PSIM には線形スイッチとして npn および pnp バイポーラ接合トランジスタ(BJT)と n-チャンネル及び p-チャンネル MOSFET モデルを用意しています。

線形 npn バイポーラ接合トランジスタ(npn Transistor(3-state)) 線形 pnp バイポーラ接合トランジスタ(pnp Transistor(3-state))

線形 n-チャネル MOSFET(MOSFET(3-state))

線形 p-チャネル MOSFET(p-MOSFET(3-state))

シンボル

npn Trar	isistor pnp Transistor	MOSFET	p-MOSFET	
(3-sta	ate) (3-state)	(3-state)	(3-state)	
	-	JĘZ		

BJT(npn Transistor(3-state) および pnp Transistor(3-state))の仕様

パラメータ	機能
電流増幅率	トランジスタの電流ゲイン β(β=I _c / I _b として定義)
バイアス電圧 Vr	順方向バイアス電圧(NPN の場合ベースーエミッタ間, PNP の場合エミ ッターベース間)(V)
V _{ce,sat} [PNPの場合は V _{ec,sat}]	NPN のコレクターエミッタ間飽和電圧および PNP のエミッターコレク タ間飽和電圧(V)

MOSFET(MOSFET(3-state) および p-MOSFET(3-state))の Level1 仕様

パラメータ	機能
オン抵抗	MOSFET のオン抵抗、R _{ds(on)} (Ω)
闞電圧 Vgs(th)	ゲート-ソース電圧の閾電圧(V)
相互コンダクタンス gm	MOSFET の相互コンダクタンス(G)
ダイオード電圧	逆並列ダイオードの順電圧(V)
ダイオード抵抗	逆並列ダイオードのオン抵抗(Ω)

MOSFET(MOSFET(3-state) および p-MOSFET(3-state))の Level2 仕様

パラメータ	機能
ブレイクダウン電圧	アヴァランシェ・ブレイクダウンを起こさない最大のドレイン/ソース間 電圧(V)
 オン抵抗	電圧(V) MOSFETのオン抵抗、R _{ds(on)} (Ω)
閾電圧 Vgs(th)	ゲート-ソース電圧の閾電圧(V)
内部ゲート抵抗	ゲート内部抵抗(Ω)
相互コンダクタンス gm	MOSFET の相互コンダクタンス(G)
キャパシタンス Cgs	ゲートーソース間の寄生容量(F)
キャパシタンス Cgd	ゲートードレイン間の寄生容量(F)
キャパシタンス Cds	ドレイン-ソース間の出力容量(F)
ダイオード電圧	逆並列ダイオードの順電圧(V)
ダイオード抵抗	逆並列ダイオードのオン抵抗(Ω)

線形 BJT スイッチはベース電流 lb で制御されます。スイッチの状態は遮断(オフ),線形, 飽和(オン)のいずれかの領域です。以下に NPN トランジスタの各領域電圧・電流特性を示します。

- 線形領域 V_{be} = V_r ; I_c = β* I_b ; V_{ce} > V_{ce, sat}
- 飽和領域 V_{be} = V_r ; I_c < β* I_b ; V_{ce} = V_{ce, sat}

ここで、Vbeはベースーエミッタ間電圧、Vceはコレクターエミッタ間電圧、lcはコレクタ電流です。

PNP トランジスタの場合の各領域の電圧・電流特性を以下に示します。

- 線形領域 V_{eb} = V_r; I_c = β* I_b; V_{ec} < V_{ec.sat}
- 飽和領域 V_{eb} = V_r ; I_c < β* I_b ; V_{ec} = V_{ec.sat}

ここで、Vebはエミッターベース間電圧、Vecはエミッターコレクタ間電圧、Icはコレクタ電流です。

線形 MOSFET スイッチはゲートーソース間電圧、Vgsで制御されます。スイッチの状態は遮断(オフ),線形(リニア), 飽和(オン)のいずれかの領域です。

以下に n-チャンネル MOSFET の場合の各領域の特性を示します。

- 遮断領域 Vgs<Vgs(th); Id=0
- 能動領域 Vgs>Vgs(th)及び Vgs-Vgs(th)<Vds; Id=gm*(Vgs-Vgs(th))
- オーム領域 Vgs>Vgs(th)及び Vgs-Vgs(th)>Vds; Id=Vds/Rds(on)
- ここで、Vgsはゲートーソース間電圧、Vdsはドレインーソース間電圧、ldはドレイン電流です。

p-チャンネル MOSFET の場合の各領域の特性を示します。

- 遮断領域 Vgs>Vgs(th); Id=0
- 能動領域 Vgs<Vgs(th)及び Vgs-Vgs(th)>Vds; Id=gm*(Vgs-Vgs(th))
- オーム領域 Vgs<Vgs(th)及び Vgs-Vgs(th)<Vds; Id=Vds/Rds(on)

線形スイッチの NPN/PNP BJT 及び n-チャンネル/p-チャンネル MOSFET ではゲート(ベース)ノードは パワー端子です。必ずパワー回路素子(抵抗や電源など)に接続するようにしてください。ゲート・ブロック やスイッチ制御回路に接続することはできません。

ご注意:BJT 及び MOSFET の線形スイッチモデルは単純な回路では問題ありませんが、回路が複雑にな ると正しく動作しないことがあります。これらのモデルをご使用になるときは充分ご注意くださ い。

以下に線形スイッチモデルの使用例を示します。左側の回路は線形レギュレータ回路で、トランジスタ は線形領域で動作します。右側の回路は簡単なテスト回路です。

4.2.12 スイッチ・ゲート信号ブロック(Switch Gating Block)

スイッチ・ゲート信号ブロックはスイッチやスイッチモジュールのゲート信号パターンを定義します。 ゲート信号パターンを、直接定義する Gating Block と、テキストファイルで定義する Gating Block (file)の 2 種類の素子があります。また、スイッチ素子のゲート端子にのみ接続できます。その他の素子には接続で きません。

シンボル

仕様

L1*	
パラメータ	機能
周波数	│ゲート信号ブロックに接続されたスイッチやスイッチモジュールの動作周 │波数(Hz)
ポイント数	スイッチングポイント数(Gating Block のみ)
スイッチングポイント	スイッチングポイント(度数)。周波数が0の場合は、スイッチングポイント は秒を意味します。(Gating Blockのみ)
ゲーティングテーブル ファイル	ファイル名指定による参照テーブル(Gating Block (file) のみ)

スイッチングポイント数は1周期内のスイッチング動作の総数を意味します。例えば、スイッチが1周期内に1度オンオフされた場合は、スイッチングポイント数は2になります。

Gating Table File は sch ファイルと同じフォルダに置いてください。Gating Table File のフォーマット は次のようになります。

n

- G1
- G2
-

Gn

 G_1 、 G_2 、 G_n はスイッチングポイントです。

例

	35 92	175 187	345 357	
0		180	360	(deg.)
スイッチが 2000Hz で動作し		以下のようなケ	ート・パター	-ンを持つと仮定します。

スイッチが 2000Hz で動作し、1 周期内で以下のようなゲート・バターンを持つと仮定します。 PSIM では、このスイッチのゲート・ブロックの仕様は以下となります。

周波数	2000
ポイント数	6
スイッチングポイント	35, 92, 175, 187, 345, 357

ゲート・パターンには 6 個所のスイッチングポイント(3 パルス)があります。対応するスイッチング角は それぞれ 35°, 92°, 175°, 187°, 345°, 357°となります。

Gating Block (file) を使う場合は次のようになります。

周波数	2000
スイッチングポイントファイ	ル test.tbl

test.tbl は次のようになります。

6 35. 92. 175.

187.

345.

357.

4.2.13 単相スイッチモジュール(Single-Phase Switch Modules)

PSIM には内蔵の単相ダイオードブリッジモジュール(single-phase diode bridge module)とサイリスタブ リッジモジュール(thyristor bridge module)があります。シンボルとモジュールの内部接続を以下に示しま す。

シンボル

仕様

パラメータ	機能
電圧降下	ダイオードかサイリスタの順方向電圧降下(V)
ダイオード抵抗	ダイオードのオン抵抗(Ω)(Diode bridge のみ)
初期状態_i	スイッチ i 用初期状態
電流フラグ_i	スイッチ i 用電流フラグ

サイリスタモジュールの底部にある端子 Ct はスイッチ1用のゲート制御端子です。サイリスタモジュー ルについては、スイッチ1用のゲート制御だけを指定します。他のスイッチのゲート制御はプログラム内 部で参照されます。

単一サイリスタ・スイッチと同様に、サイリスタブリッジも、以下の例に示すようにゲート信号ブロッ クか点弧角コントローラのいずれかで制御されます。

例:サイリスタブリッジの制御

左側の電流ゲート制御はゲート信号ブロックで指定され、右側は点弧角コントローラで制御されます。 点弧角コントローラの大きな利点は、サイリスタブリッジの遅れ角 α を角度で直接に制御できる点です。

4.2.14 三相スイッチモジュール(Three-Phase Switch Modules)

以下の図に三相スイッチモジュールと内部接続を示します。VSI3 は MOSFET-type または IGBT-type ス イッチから構成されます。電流源インバータモジュール CSI3 は GTO-type スイッチまたは IGBT と直列ダ イオードにより構成されます。

仕様(ダイオードブリッジ)

パラメータ	機能
ダイオード閾値電圧	ダイオードの閾値電圧(V)
ダイオード抵抗	ダイオードのオン抵抗(Ω)
初期状態_i	スイッチ <i>i</i> 用初期状態フラグ
電流フラグ_ <i>i</i>	スイッチ <i>i</i> 用電流フラグ

仕様(サイリスタブリッジ)

パラメータ	機能
電圧降下	サイリスタの導通電圧降下(V)
初期状態_i	スイッチ i 用初期状態フラグ
電流フラグ_i	スイッチ i 用電流フラグ

仕様(VSI3 ブリッジ)(※MOSFET スイッチ)

パラメータ	機能
オン抵抗	MOSFET のオン抵抗(Ω)
ダイオード閾値電圧	ダイオードの閾値電圧降下(V)
ダイオード抵抗	ダイオードのオン抵抗(Ω)
初期状態_i	スイッチ i 用初期状態フラグ
電流フラグ_ <i>i</i>	スイッチ i 用電流フラグ

仕様(VSI3 ブリッジ)(※IGBT スイッチ)

パラメータ	機能
飽和電圧	IGBT トランジスタの飽和電圧 V _{ce_sat} (V)
抵抗	IGBT トランジスタのオン抵抗(Ω)
ダイオード閾値電圧	逆並列ダイオードの閾値電圧降下(V)
ダイオード抵抗	逆並列ダイオードのオン抵抗(Ω)
初期状態_i	スイッチ <i>i</i> 用初期状態フラグ
電流フラグ_i	スイッチ i 用電流フラグ

仕様(CSI3 ブリッジ)

パラメータ	機能
電圧降下	スイッチの順方向導通電圧降下(V)
抵抗	スイッチの順方向オン抵抗(Ω)
初期状態_i	スイッチ i 用初期状態フラグ
電流フラグ_ <i>i</i>	スイッチ i 用電流フラグ

単相モジュールと同様に、三相モジュールについてはスイッチ1用のゲート制御だけを指定します。他のスイッチのゲート制御は自動的に参照されます。半波サイリスタブリッジについては、隣接二相間で120度ずれています。その他の全てのブリッジについては60度ずれています。

サイリスタブリッジは点弧角コントローラで制御されます。同様に PWM 電圧電流源インバータは PWM ルックアップテーブルコントローラで制御されます。

次に三相電圧源インバータモジュールの制御の例を示します。

例:三相 VSI モジュールの制御

左側のサイリスタ回路は点弧角コントローラを使用します。三相回路については、電圧 V_{ac}のゼロクロ ス時が遅れ角 α=0 に対応します。そのため、この信号はコントローラに同期を与えるために使用されま す。

右側の回路は PWM ルックアップテーブルコントローラを使用します。PWM パターンはテキストファイ ルのルックアップテーブルに保存されます。ゲートパターンは変調指標に基づいて選択されます。PWM ル ックアップテーブル制御器の入力としては他に遅れ角、同期化、有効・無効信号があります。PWM ルック アップテーブル制御器の説明も合わせてご参照ください。

4.3 変圧器(Transformers)

4.3.1 理想変圧器(Ideal Transformer)

理想変圧器(Ideal Transformer)には損失、漏れ磁束がありません。

シンボル

大きなドットの付いた巻線が一次側を表し、もう一方の巻線が二次側を表します。

仕様

パラメータ	機能
Np(一次)	一次巻線巻数
Ns(二次)	二次卷線巻数

巻線比は定格電圧比に等しいので、巻数は各側の定格電圧で置き換えることができます。

4.3.2 単相変圧器(Single-Phase Transformers)

単相変圧器には、1つまたは2つの一次巻き線、1つから6つまでの二次巻き線の組み合わせ があります。 シンボル

シンボルでは、pは一次側を、sは二次側を、tは三次側を表します。 大きなドットの付いた巻線が一 次巻線を表します。多巻線変圧器については、巻線の順番は上から下に数えます。2または3巻線変圧器に ついての仕様は以下のようになります。

仕様(2または3巻線変圧器の場合)

パラメータ	機能
R _p (一次) R _s (二次) Rt (三次)	ー次巻線、二次巻線、三次巻線の抵抗(Ω)。一次側に換算
L _p (一次漏れ) L _s (二次漏れ) L _t (三次漏れ)	ー次巻線、二次巻線、三次巻線の漏れインダクタンス(H)。一次側に換算
Lm(磁化)	磁化インダクタンス(H)。一次側に換算
Np(一次) Ns(二次) Nt (三次)	ー次巻線、二次巻線、三次巻線の巻数

マベての抵抗およびインダクタンスは一次巻線側を参照します。一次巻線が複数存在する場合には、最 上位の巻き線が参照されます。

2つ以上の一次巻線、または3つ以上の二次巻線を持つ変圧器についての仕様は以下のようになります。

仕様(2つ以上の一次巻線、または3つ以上の二次巻線を持つ変圧器の場合)

パラメータ	機能
R _{p_i} (一次 i) R _{s_i} (二次 i)	i 番目の一次巻線、二次巻線、三次巻線の抵抗(Ω)。一次側に換算
L _{p_i} (一次 i 漏れ) Ls_i (二次 i 漏れ)	i 番目の一次巻線、二次巻線、三次巻線の漏れインダクタンス(H)。一次側に 換算
Lm (磁化)	磁化インダクタンス(H)。一次側に換算
N _{p_} (一次 i) N _{s_} i (二次 i)	i番目の一次巻線、二次巻線、三次巻線の巻数

すべての抵抗およびインダクタンスが一次巻線側に参照されます。

変圧器モデル

変圧器は結合されたインダクタとしてモデル化されます。例えば、単相 2 巻線変圧器 2 つの 結合されたインダクタとしてモデル化されます。等価回路は以下となります。

ここで Rp と Rs は一次/二次巻線抵抗、Lp と Ls は一次/二次巻線漏れインダクタンス、Lm は磁化インダク タンスです。全ての値は一次側から参照した値で表現されています。

例

単相 2 巻線変圧器が巻線抵抗 0.002Ω、一次側二次側両方の漏れインダクタンス 1mH(全て一次側に換 算)、磁化インダクタンス 100mH、巻線比 Np:Ns=220:440 とします。変圧器の仕様は以下のとおりです。

R _p (一次)	2m
R _s (二次)	2m
L _p (一次)	1m
L _S (二次)	1m
L _m (磁化)	100m
N _p (一次)	220
N _S (二次)	440

4.3.3 三相変圧器

PSIM には、以下に示すような 2 巻線と 3 巻線の変圧器モジュールが提供されており、全て三脚鉄心です。

- ⁻ 三相変圧器(巻線接続無し)
- 三相 Y/Y、Y/Δ 接続変圧器
- 三相三巻線変圧器(巻線接続無し)
- 三相三巻線 Υ/Υ/Δ、Υ/Δ/Δ接続変圧器
- 三相三巻線 Y/Z1、Y/Z2、Δ/Z1、Δ/Z2 移相変圧器 (phase-shifting transformers)
- 三相四巻線変圧器(巻線接続無し)
- 三相六巻線変圧器(巻線接続無し)

仕様 (移相変圧器を除いた全ての変圧器の場合)

パラメータ	機能
R _p (一次) Rs (二次) Rt (三次)	一次巻線、二次巻線、三次巻線の抵抗(Ω)。一次側に換算
Lp (一次 漏れ) Ls (二次 漏れ) Lt ₍ 三次 漏れ)	ー次巻線、二次巻線、三次巻線の漏れインダクタンス(H)。一次側に換算
Lm (磁化)	磁化インダクタンス(H)。一次側に換算
Np (一次) Ns (二次) Nt (三次)	一次巻線、二次巻線、三次巻線の巻数

仕様 (移相変圧器の場合)

パラメータ	機能
R _p (一次) R _{s1} (二次 1) R _{s2} (二次 2)	一次巻線、二次巻線、二次巻線(2nd)の抵抗(Ω)。一次側に換算
Lp (一次 漏れ) L _{s1} (二次 1 漏れ) L _{s2} (二次 2 漏れ)	ー次巻線、二次巻線、二次巻線(2nd)の漏れインダクタンス(H)。 一次側に換算
L _m (磁化)	磁化インダクタンス(H)。一次側に換算
N _p (一次) N _{s1} (二次 1) N _{s2} (二次 2)	一次巻線、二次巻線、二次巻線(2nd)の巻数

シンボルで、pは一次側を、sは二次側を、tは三次側を表します。全ての抵抗とインダクタンスは、一 次側もしくは第1巻線側を参照しています。三相変圧器は単相変圧器と同様にモデル化されています。全 てのパラメータは一次側に換算した値で表されています。

三相移相変圧器では、角度 るは、二次線間電圧 Vab と一次線間電圧 VAB の位相の差を意味します。角度 と巻線数の関係は、以下の通りです。 Y/2

$$\frac{N_{s2}}{N_{s1} + N_{s2}} = \frac{\sin(30^{\circ} - \delta)}{\sin(30^{\circ} + \delta)} \qquad 0^{\circ} \le \delta \le 30^{\circ}$$
$$\frac{N_{p}}{N_{s1} + N_{s2}} = \frac{1}{2\sin(30^{\circ} + \delta)} \cdot \frac{V_{AB}}{V_{ab}}$$

Y/Z2 変圧器の場合

$$\frac{N_{s2}}{N_{s1} + N_{s2}} = \frac{\sin(30^\circ - |\delta|)}{\sin(30^\circ + |\delta|)} \qquad 0^\circ \le \delta \le 30^\circ$$

$$\frac{N_p}{N_{s1} + N_{s2}} = \frac{1}{2\sin(30^\circ + |\delta|)} \cdot \frac{V_{AB}}{V_{ab}}$$

Delta/Z1 変圧器の場合

$$\frac{N_{s2}}{N_{s1} + N_{s2}} = \frac{\sin(|\delta|)}{\sin(60^\circ - |\delta|)} - 30^\circ \le \delta \le 0^\circ$$
$$\frac{N_p}{N_{s1} + N_{s2}} = \frac{\sqrt{3}}{2\sin(60^\circ - |\delta|)} \cdot \frac{V_{AB}}{V_{ab}}$$

Delta/Z2 変圧器の場合

$$\frac{N_{s2}}{N_{s1} + N_{s2}} = \frac{\sin(60^{\circ} - |\delta|)}{\sin(|\delta|)} - 60^{\circ} \le \delta \le -30^{\circ}$$
$$\frac{N_{p}}{N_{s1} + N_{s2}} = \frac{\sqrt{3}}{2\sin(|\delta|)} \cdot \frac{V_{AB}}{V_{ab}}$$

下表は一般的な変圧器の巻線比と位相遅れを示しています。

δ		Ns2/(Ns	_{s1} +N _{s2})			Np/(Ns1+N	s2)*Vab/VAB	
(deg.)	Y/Z1	Y/Z2	Δ/Z1	∆/Z2	Y/Z1	Y/Z2	Δ/Z1	∆/Z2
30	0				0.577			
20	0.227				0.653			
15	0.366				0.707			
0	1	1	0		1	1	1	
-15		0.366	0.366			0.707	1.225	
20		0.227	0.532			0.653	1.347	
-30		0	1	1		0.577	1.732	1.732
-40				0.532				1.347
-45				0.366				1.225
-60				0				1

4.3.4 三相変圧器(可飽和)(Three-Phase Transformer with Saturation)

飽和と残留磁束を考慮可能な三相3巻線の変圧器モジュールが提供されています。

シンボル

パラメータ	機 能
動作電圧(相電圧)	変圧器一次側の一相あたりの電圧実効値(V)
動作周波数	変圧器の動作周波数(Hz)
R _p (一次)	一次卷線抵抗(Ω)
Lp(一次 漏れ)	ー次巻線の漏れインダクタンス(H)
Rs(二次)	二次巻線抵抗(Ω)、一次側に換算。
Ls(二次 漏れ)	二次巻線の漏れインダクタンス(H)、一次側に換算。
Rm(コア損失)	変圧器のコア損失を表す抵抗(Ω)
I _{m vs.} L _m	磁化電流 Im(A)に対する一次巻線から見た磁化特性を定義する磁化インダク タンス Lm(H)の値
A相残留磁束	A相の単位当たりの残留磁束
B相残留磁束	B相の単位当たりの残留磁束
C 相残留磁束	C 相の単位当たりの残留磁束
N _p (一次) N _s (二次)	一次巻線、二次巻線の巻数

すべての抵抗およびインダクタンスが一次巻線側に換算されます。

画像では、pは一次側を指し、sは二次側を指します。ノード en は、制御ロジック信号に接続する、制 御ノードです。0から1へ信号が変わる瞬間が、変圧器が通電されている瞬間を示します。

動作電圧は実際の動作条件における相あたりの電圧を指していて、定格電圧とは限らないことに注意し てください。例えば、変圧器の定格は 63kV(一次側線間電圧実効値)で、一次巻線が Y に接続されている場 合、相あたりの動作電圧は、63000/√3Vとなります。一次巻線がデルタに接続されている場合は、相あた りの動作電圧は 63000V になります。

同じ変圧器をデルタに接続して、例えば実際の動作電圧が 60000V である場合、相あたりの動作電圧は 60000Vになります。

4.4 磁気要素(Magnetic Elements)

磁気要素のモデルとして、巻線、漏れ磁束経路、エアギャップ、線形コア、および可飽和コアが提供され ます。これらの要素を組み合わせるにより、各種磁気デバイスの等価なモデル作成が可能となります。

異なる単位系が磁気回路解析で用いられています。下の表は SI 系(System International)と混成 CGS 系 (Centimeter Gram Second)単位系の磁気量と二つの単位系の変換を示しています。

量	SI Unit	CGS Unit	CGS-SI 変換
磁束 Ø	Weber	Maxwell	1 Weber=10 ⁸ Maxwell
磁束密度 <i>B</i>	Tesla	Gauss	1Tesla=10⁴ Gauss
磁場強度 <i>H</i>	A*Turns/m	Oerstad	1 A*Turns/m= $\frac{4\pi}{1000}$ Oerstad
起磁力 (mmf) <i>F</i>	A*Turns	Gilbert	1 A*Turns= $\frac{4\pi}{10}$ Gilbert
透磁率 (真空) µ o	4 π *10 ⁻⁷	1	4 π *10 ⁻⁷

4.4.1 巻き線(Winding)

仕様

巻き線要素は電気回路と磁気等価回路とのインターフェースです。

シンボル

仕様

パラメータ	機能
卷線卷数	巻き線の巻数
巻き線抵抗	巻き線抵抗

この要素は磁気コアの巻き線を示す。2つの磁気ノード(E1と E2)は、電気回路に接続されます。2つの磁気ノード(M1と M2)は、他の磁気要素(例えば漏れ磁束の通路、エアギャップと磁気コア)に接続されます。

4.4.2 漏れ磁束経路(Leakage Flux Path)

この要素は漏れ磁束の経路をモデル化したものです。

シンボル

M1
$$\longrightarrow$$
 --- \longleftarrow M2

仕様

パラメータ	機能
インダクタンス ファクタ	コアのインダクタンスファクターA_ (単位 H)
抵抗損失	抵抗 R(Ω)は漏れ磁束による損失
電流フラグ	抵抗に流れる電流のフラグ

抵抗 R は漏れ磁束による損失を表します。漏れ磁束経路に印加された起磁力が F であると仮定する と、漏れ磁束経路の電気等価回路は以下のように表せます。

起磁力は、電圧源の形でコンデンサ(静電容量はAL)と抵抗Rの間に印加されます。このブランチを通じて流れる電流を*i*とし、そのrms値を*Ims*とすると、漏れ磁束の損失と抵抗Rの関係は次のようになります。 $P_{loss} = I_{rms}^2 \cdot R$

4.4.3 エアギャップ(Air Gap)

エアギャップ要素のシンボルと仕様は以下の通りです。

シンボル

仕様(Air Gap)

パラメータ	機能
エアギャップ長	エアギャップの長さ、/g (m)
断面積	エアギャップの断面積、Ac (m²)
抵抗損失	抵抗R(Ω)はエアギャップフリンジ効果による損失を表します
電流フラグ	抵抗に流れる電流のフラグ

仕様(Air Gap(AL))

パラメータ	機能
インダクタンス	
ファクタA∟	コアのインダクダンスファクダーAL (単位F)
抵抗損失	抵抗R(Ω)はエアギャップフリンジ効果による損失を表します
電流フラグ	抵抗に流れる電流のフラグ

抵抗 R はエアギャップフリンジ効果による損失を表します。漏れ磁束経路に加えられた起磁力が F で あると仮定すると、エアギャップの電気等価回路は以下の通りです。

起磁力は、電圧源の形でコンデンサ(静電容量はAL)と抵抗Rの間に加えられます。インダクタンスファクターは次のように定義されます。

$$A_L = \frac{\mu_0 \cdot A_c}{l_g}$$

ここで、μ₀= 4π*10⁻⁷とします。

低抗における損失はフリンジ効果による損失を表す。この損失は次の通りです。

$$P_{loss} = I_{rms}^2 \cdot R$$

ここで、Imsは抵抗Rを通じて流れる電流iの実効値を表します。

4.4.4 線形コア(Linear Core)

この要素は線形無損失コアを表します。

シンボル

仕様

パラメータ	機能
インダクタンス ファクタ AL	コアのインダクタンスファクターAL (単位 H)
コアの長をL、断面積を Ac とするならばインダクタンス要因 ALは次のように表現します。	

$$A_L = \frac{\mu_o \cdot \mu_r \cdot A_c}{L}$$

ここで、urはコア材料の比透磁率を示します。

4.4.5 可飽和コア(Saturable Core)

この要素は飽和およびヒステリシスを用いる磁気コアをモデル化したものです。

シンボル

パラメータ	機能
インダクタンス	
ファクタ A∟	$ = F O + J \phi J \phi J \chi J F J \phi - (AL) $
抵抗損失	コアによる損失を表す抵抗R(Ω)
係数Φsat	コア B-H カーブの係数Φsat(Weber)
係数 K1	コア B-H カーブの係数 K1
係数 K _{exp1}	コア B-H カーブの係数 K _{exp1}
係数 K2	コア B-H カーブの係数 K₂
係数 K _{exp2}	コア B-H カーブの係数 K _{exp2}
初期磁束Φo	コアの初期磁束Φo(Weber)
電流フラグ	抵抗 R に流れる電流のフラグ。Simview での表示や演算に使用可能。

シンボル中のノード M1 と M2 は他の磁気要素(巻線、漏れ磁束経路、エアギャップ等)に接続するノード です。またノード C1はコアの磁束を示す出力ノードです。このノードに電圧プローブを接続することによ って、コアの磁束を表示することが出来ます。ノード C1は制御回路ノードを示します。

係数の K1、Kexp1、K2、および Kexp2 は、実際の磁性材料の B-H カーブに合わせるために使用されます。 係数 K1は、コア材料によって値が異なりますが通常 0.7~1の値をとります。

係数 Kexp1 は主にコアの飽和率に影響を与え、10 ~200 の範囲(低透過性フェライトの場合 10、metglas の場合 200)になります。

係数 K2 と Kexp2 は非常にまれな時(例えば、鉄共振の調節装置)に使用されます。K2、Kexp2 は B-H カーブ に影響を与えないように以下の通りに設定されます。

K₂> 2 Kexp2> 20

コア係数を決定するためのチュートリアルが PSIM インストールフォルダの"tutorials"フォルダにありま す。また、コアの B-H カーブをプロットするためのプログラム(Utilities->B-H Curve)が用意されています。

4.5 その他素子 (Other Elements)

オペアンプ(Operational Amplifier) 4.5.1

2 種類のオペアンプモデル(理想オペアンプ、非線形オペアンプ)が提供されています。理想オペアンプは 負帰還での動作のみ対応しており、正帰還は対応していません。非線形オペアンプにはこの制限はありま せん。

理想オペアンプ(Ideal Operational Amplifier) 4.5.1.1

PSIM では Op.Amp、Op.Amp(ground)、Op.Amp(ground/inverted)の3種類の理想演算増幅器(オペアン プ)があります。理想オペアンプは以下の図に示すパワー回路素子を使ってモデリングされています。 シンボル

ここで、

V+; V-非反転および反転入力電圧

 V_{o} 出力電圧

オペアンプのゲイン(プログラム上は A=100,000) А

R₀ 出力抵抗値(プログラム上は R₀=80Ω)

仕様

パラメータ	機能
電圧 Vs+	オペアンプの上限値電源電圧
電圧 Vs-	オペアンプの下限値電源電圧

Op.Amp、Op.Amp(ground)、Op.Amp(ground/inverted)の違いは GND です。Op.Amp では基準接地ノー ドがパワー回路の GND に接続されているのに対して、Op.Amp(ground)と Op.Amp(ground/inverted)の GND 端子は独立に接続可能で、浮かしておくことも可能です。

オペアンプのシンボルは比較器に似ているので注意してください。オペアンプでは、反転入力が左上に あり、非反転入力は左下です。比較器ではこれが逆になります。

例:力率改善ブースト回路

以下の回路は力率改善ブースト回路の例です。電流ループが内ループ、電圧ループが外ループを形成しています。オペアンプを使って電圧・電流ループとも PI レギュレータを構成しています。

4.5.1.2 非線形オペアンプ(Non-Ideal Operational Amplifier)

理想オペアンプモデルに対し、このオペアンプモデルはバンド幅制限と出力電流制限を定義することができます。

PSIM は Op.Amp.(level-1) と Op.Amp.(ground)(level-1)の 2 つオペアンプモデルを提供しています。 Op.Amp.(level-1) と Op.Amp.(ground)(level-1)との違いは GND です。Op.Amp.(level-1)では基準接地ノード がパワー回路の GND に接続されているのに対して、 Op.Amp.(ground)(level-1)の GND 端子は独立に接続 可能で、浮かしておくことも可能です。

非線形オペアンプのシンボルには、右上部に1の表記があります。

シンボル

Op. Amp. (level-1)	Op. Amp. (ground) (level-1)
$V_{-} \sim 1$ $V_{+} \sim + V_{o}$	$V_{-} \sim 1$ $V_{+} \sim + $ v_{o} v_{d}

仕様

パラメータ	楼能
	11,8% HC
入力抵抗 Rin	オペアンプの入力抵抗 (Ω)
直流ゲイン A。	オペアンプの直流ゲイン
単位ゲイン周波数	オペアンプのゲインが1である周波数(Hz)
出力抵抗 R。	オペアンプの出力抵抗 (Ω)
最大出力電流	オペアンプの最大出力電流(A)
電圧 Vs+	オペアンプの上限値電源電圧
電圧 Vs-	オペアンプの下限値電源電圧

オペアンプのオープンループゲイン特性を以下に示します。

4.5.2 TL431 シャントレギュレータ(TL431 Shunt Regulator)

TL431 シャントレギュレータ(TL431 shunt regulator)のシンボルは、以下の通りです。 シンボル

TL431 レギュレータは基準ノードの電圧を約 2.495V に保ちます。このモデルでは、TL431 の有限帯域 幅がモデル化されます。すなわち、TL431 モデルの AC 周波数特性はデータシートの図のようになります。

4.5.3 フォトカプラ(Opto-Coupler)

フォトカプラ(Optocoupler)のシンボルおよびパラメータは以下の通りです。

仕様

パラメータ	機能
電流伝達率	トランジスタ電流 i。とダイオード電流 id間の電流伝達率。CTR=i₀/id
ダイオード抵抗	ダイオード抵抗 Rd(Ω) ※必ず0より大きい値に設定して下さい。
ダイオード閾値電圧	ダイオード順方向閾値電圧 <i>V_{d_th}</i> (V)
飽和電圧 Vce_sat	トランジスタ飽和電圧 V _{ce_sat} (V)
キャパシタンス Cp	トランジスタのコレクタ-エミッタ間のキャパシタンス <i>Cp</i> (F)

これらのパラメータは各メーカのデータシートから直接得たり、データシートの情報から計算したりす ることで得られます。Motorola 社のフォトカプラ 4N25 を例に挙げます。データシートより、電流伝達率 およびトランジスタ飽和電圧は

$$CTR = 70\% = 0.7; v_{ce-sat} = 0.15 \vee$$

データシートの"LED 順方向電圧 vs 順方向電流"の特性から、ユーザはダイオード抵抗 R_d と閾値電圧 V_{d_th} を計算することが可能です。ダイオード順方向電圧は、以下の比例直線に近似することが可能です。

$$v_d = V_{d th} + R_d * i_d$$

T_A=25℃の時、この曲線から *i*_d=10mA、*v*_d =1.15V; *i*_d =40mA、*v*_d =1.3Vの2つが読み取れます。これらの2つの点に基づき、R_dと V_{d_th}の値は次のように計算されます。

 R_d =5 Ω , $V_{d_{th}}$ =1.1V

このフォトカプラモデルは遅れを考慮していませんが、キャパシタ C_pを通ってトランジスタのコレクタ -エミッタ間のターンオン/ターンオフ過渡電流をモデリングしています。このキャパシタンスは立下り時間 *t_{fal}とスイッチング時間試験条件より、以下のように求められます*。

$$C_p = \frac{t_{fall}}{2.2 \cdot R_I}$$

ここで R_L はスイッチング時間試験回路中の抵抗負荷です。4N25 では、データシートより t_{fall} =1.3 μ s、 R_L =100 Ω となり、これよりキャパシタンスは C_p =6nF と求められます。

4.5.4 dv/dt ブロック(dv/dt Block)

dv/dt ブロックは制御回路の微分器と同等の機能を提供しますが、パワー回路用です。dv/dt ブロックの 出力は入力電圧の時間に関する微分です。

微分は以下のように計算しています。

$$v_{o}(t) = \frac{v_{in}(t) - v_{in}(t - \Delta t)}{\Delta t}$$

ここで、 Δt はシミュレーションタイムステップ、 $v_{in}(t) \ge v_{in}(t-\Delta t)$ はそれぞれ現在時刻の入力と1ステップ前の入力です。

シンボル

4.5.5 リレー(Relays)

ノーマルオープン(NO)スイッチとノーマルクローズ(NC)スイッチと2つのリレーブロックが用意されています。

シンボル

仕様

パラメータ	機能
コイル定格電圧	リレーコイルの定格電圧(V)
コイル抵抗	コイルの抵抗(Ω)
動作電圧	いずれかのリレーが動作する電圧(V)
リリース電圧	いずれかのリレーが初期位置に戻る電圧(V)
動作時間	動作電圧に到達してからスイッチが動作するまでの時間(s)
リリース時間	解除電圧に到達してからスイッチが解除されて初期位置に戻るまでの
	時間(s)

リレーは1つのノーマルオープンスイッチおよび1つのノーマルクローズスイッチを備えています。画像に示すような極性で直流電圧がリレーコイルに印加された時、電圧が[動作電圧]に達すると、[動作時間] によって定義された時間遅延後に、NOスイッチは閉じ、NCスイッチは開きます。

コイル電圧が[リリース電圧]に下がると、[リリース時間]で定義された時間遅延後に、2 つのスイッチは 初期位置に戻ります。

4.6 モータ駆動モジュール(Motor Drive Module)

モータ駆動モジュール(Motor Drive Module)は PSIM のアドオン・オプションで、モータモデルと機械負荷のモデルを提供します。

本章では、モータ駆動モジュールは電気機器として説明します。機械要素および速度・トルク・位置センサは 4.9 章にて説明します。

4.6.1 機械システムでの「基準方向」(Reference Direction)

モータ駆動システムでは、機械系の方程式の作成のために位置に関する基準表記が必要となります。下記に例を示します。

上記システムは2つの誘導機、すなわち結合された IM1 と IM2 から構成されます。一方がモータもう一方が発電機として動作します。IM1 から見た機械方程式は下記の通り記述されます。

$$(J_1+J_2)\cdot \frac{d\omega_m}{dt} = T_{em1}-T_{em2}$$

上記の J1 と J2 はイナーシャのモーメント、Tem1 と Tem2 はそれぞれ IM1 と IM2 で生成されるトルク を表します。

IM2から見ると、機械方程式は下記の通り記述されます。

$$(J_1 + J_2) \cdot \frac{d\omega_m}{dt} = T_{em2} - T_{em1}$$

これらの二つの方程式は双方とも有効であるが、それぞれ相反する機械スピードが生成されます。

この不確定性を排除するために、PSIM では基準方向(reference direction)というコンセプトにより、機械 系において機械方程式が一意に定義されます。

機械系では、一つの素子がマスタユニット(この要素はマスタモード動作となります)として定義され、他の素子はスレーブモードとなります。マスタとして使用できる素子は電気機器、機械・電気インターフェ ースブロック、ギアボックスです。

マスタユニットが機械系の基準方向を定義します。マスタユニットのシャフトノードから、他の機械系 素子への方向が基準方向となります。

機械系の基準方向が定義されると、その機械系の速度とトルクが決定されます。例えば、右手の親指方 向を機械系の方向とすると、丸めた他の指の方向がスピードとトルクの正方向となります。

さらに、各機械素子はそれぞれの基準方向が定義されています。下図にて、各機械素子の基準方向を例示します。

各素子および機械系全体の基準方向(reference direction)に基づいて、各素子の機械系への影響が定まります。

例えば、ある素子の基準方向が、系の基準方向と一致する場合には、生成されるトルクは正方向のシャ フト回転に寄与することになります。一方、素子の基準方向が系の基準方向と相反する場合には、負方向 への回転に寄与することとなります。

前述の 2 つの機械による例では、IM1 をマスタと定義するならば下図の例の通り、左から右へ基準方向 を規定できます。この基準方向に基づくと、IM1 は基準方向と順方向、一方 IM2 は逆方向の接続となりま す。

この関係は、下図右側に示す等価回路にて表現できます。

同様に、下図のように IM2 をマスタと定義し、基準方向を右から左とすることもできます。この場合に は IM1 が基準方向と逆方向の接続となり、IM2 が順方向の接続となります。下図右側に同様に等価回路を 示します。

この機械系では、左側のモータがマスタで右側がスレーブです。そのため、機械系の基準方向は機械シャフトに沿って左側から右側に定義されます。さらに、基準方向が素子のドットで表した側に入ると、その素子は基準方向に沿っていると言えます。そうでなければ、基準方向に対して逆ということになります。 例えば、負荷1、スピードセンサ1、トルクセンサ1は基準方向に沿っています。そして負荷2、スピード センサ2、トルクセンサ2は基準方向に対して逆となっています。

したがって、スピードセンサが機械系の基準方向に沿っていれば、マスタモータにより発生した正の速度は、正のスピードセンサ出力を与えます。そうでなければ、スピードセンサの出力は負になります。例えば、上の例のマスタモータのスピードが正の場合、スピードセンサ1の読値は正で、スピードセンサ2 の読値は負です。

基準方向は機械負荷がモータとどのように反応するかも決定します。この系統では、2つの定トルク機械 負荷、大きさがそれぞれ TL1、TL2があります。負荷1は基準方向に沿っており、負荷2は基準方向と逆で す。そのため、マスタモータに対する負荷1の負荷トルクは TL1で、マスタモータに対する負荷2の負荷 トルクは-TL2です。

4.6.2 誘導機(Induction Machines)

かご型誘導機と巻線型誘導機のそれぞれに線形および非線形の2つのモデルが備わっています。線形モ デルはさらに汎用タイプと対称タイプに分かれます。この節では線形モデルのみ説明します。

- 線形モデルには以下の4つがあります。
 - 対称三相かご型誘導機
 - 汎用三相かご型誘導機
 - 対称三相卷線型誘導機
 - 汎用三相巻線型誘導機

仕様

パラメータ	機能
Rs(固定子抵抗)	固定子巻線抵抗(Ω)
Ls(固定子 漏れインダクタンス)	固定子巻線漏れインダクタンス(H)
R _r (回転子抵抗)	回転子巻線抵抗(Ω)
L _r (回転子 漏れインダクタンス)	回転子巻線漏れインダクタンス(H)
L _m (磁化)	磁化インダクタンス(H)
Ns/Nr 巻線比	固定子と回転子の巻線比(巻線型のみ)
極数 P	モータの極数(偶数)
慣性モーメント	モータの慣性モーメント J(kg*m²)
トルクフラグ	内部トルク Temの出力フラグ。 フラグが1に設定されると、内部トルクの出力が要求される。
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ(1:マスタ;0:スレーブ)

すべてのパラメータは固定子側に換算した値を使用します。

マスタ/スレーブフラグは機械系の基準方向を定義するために使用します。詳細は「4.6.1 機械システム での「基準方向」(Reference Direction)」を参照してください。

対称三相中性点付かご型誘導機は、対称三相かご型誘導機に固定子中性点端子を追加したものです。 PSIMの三相誘導機は以下の式で表されています。

$$\begin{bmatrix} v_{abc,s} \end{bmatrix} = \begin{bmatrix} R_s \end{bmatrix} \cdot \begin{bmatrix} i_{abc,s} \end{bmatrix} + \begin{bmatrix} L_s \end{bmatrix} \cdot \frac{d}{dt} \begin{bmatrix} i_{abc,s} \end{bmatrix} + \begin{bmatrix} M_{sr} \end{bmatrix} \cdot \frac{d}{dt} \begin{bmatrix} i_{abc,r} \end{bmatrix}$$
$$\begin{bmatrix} v_{abc,r} \end{bmatrix} = \begin{bmatrix} R_r \end{bmatrix} \cdot \begin{bmatrix} i_{abc,r} \end{bmatrix} + \begin{bmatrix} L_r \end{bmatrix} \cdot \frac{d}{dt} \begin{bmatrix} i_{abc,r} \end{bmatrix} + \begin{bmatrix} M_{sr} \end{bmatrix}^T \cdot \frac{d}{dt} \begin{bmatrix} i_{abc,s} \end{bmatrix}$$

ここで、

$$\begin{bmatrix} v_{abc,s} \end{bmatrix} = \begin{bmatrix} v_{a,s} \\ v_{b,s} \\ v_{c,s} \end{bmatrix} \qquad \begin{bmatrix} v_{abc,r} \end{bmatrix} = \begin{bmatrix} v_{a,r} \\ v_{b,r} \\ v_{c,r} \end{bmatrix} \qquad \begin{bmatrix} i_{abc,s} \end{bmatrix} = \begin{bmatrix} i_{a,s} \\ i_{b,s} \\ i_{c,s} \end{bmatrix} \qquad \begin{bmatrix} i_{abc,r} \end{bmatrix} = \begin{bmatrix} i_{a,r} \\ i_{b,r} \\ i_{c,r} \end{bmatrix}$$

かご型機では、*v*a,r = *v*b,r = *v*c,r =0 です。

ここで、 パラメータ行列は次のように定義されています。

$$\begin{bmatrix} R_{s} \end{bmatrix} = \begin{bmatrix} R_{s} & 0 & 0 \\ 0 & R_{s} & 0 \\ 0 & 0 & R_{s} \end{bmatrix} \qquad \begin{bmatrix} R_{r} \end{bmatrix} = \begin{bmatrix} R_{r} & 0 & 0 \\ 0 & R_{r} & 0 \\ 0 & 0 & R_{r} \end{bmatrix}$$
$$\begin{bmatrix} L_{s} + M_{sr} & -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} \\ -\frac{M_{sr}}{2} & L_{s} + M_{sr} & -\frac{M_{sr}}{2} \\ -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} & L_{s} + M_{sr} \end{bmatrix} \qquad \begin{bmatrix} L_{r} \end{bmatrix} = \begin{bmatrix} L_{r} + M_{sr} & -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} \\ -\frac{M_{sr}}{2} & L_{r} + M_{sr} & -\frac{M_{sr}}{2} \\ -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} & L_{s} + M_{sr} \end{bmatrix} \qquad \begin{bmatrix} L_{r} \end{bmatrix} = \begin{bmatrix} M_{sr} + M_{sr} & -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} \\ -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} & L_{r} + M_{sr} \\ -\frac{M_{sr}}{2} & -\frac{M_{sr}}{2} & L_{r} + M_{sr} \end{bmatrix}$$
$$\begin{bmatrix} M_{sr} \end{bmatrix} = M_{sr} \cdot \begin{bmatrix} \cos\theta & \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) \\ \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) \\ \cos(\theta + \frac{2\pi}{3}) & \cos(\theta \end{bmatrix}$$

ここで、M_{sr}は固定子と回転子巻線間の相互インダクタンスで、θは機械角です。相互インダクタンスは 磁化インダクタンスと以下の関係があります。

$$L_m = \frac{3}{2}M_{sr}$$

機械系方程式は以下のように表されます。

$$J \cdot \frac{d\omega_m}{dt} = T_{em} - T_L$$

ここで発生トルク Tem は以下のように定義されます。

$$T_{em} = P \cdot \left[i_{abc,s}\right]^T \cdot \frac{d}{d\theta} \left[M_{sr}\right] \cdot \left[i_{abc,r}\right]$$

対称かご型誘導機では、モータの定常状態での等価回路は以下のように示されます。sはすべりです。

例: VSI 誘導電動機ドライブシステム (A VSI Induction Motor Drive System)

下の図にオープンループ誘導電動機ドライブシステムを示します。誘導電動機は 6 極で、正弦波 PWM により電圧源インバータから供給されています。直流母線はダイオードブリッジを通じて電源を供給されています。

シミュレーション波形は機械系回転速度(rpm)、発生トルク T_{em}、負荷トルク T_{load}、三相入力電流の始動 時の過渡特性を表しています。

4.6.3 飽和付かご型誘導機(Induction Machine with Saturation)

飽和特性付誘導機には以下の2種類があります。

- 非線形三相かご型誘導機(Squirrel-cage Ind. Machine (nonlinear))

- 非線形三相巻線型誘導機(Wound-rotor Ind. Machine (nonlinear))

仕様	
パラメータ	機能
R _s (固定子抵抗)	固定子巻線抵抗(Ω)
L _s (固定子 漏れインダクタンス)	固定子巻線漏れインダクタンス(H)
R _r (回転子抵抗)	回転子巻線抵抗(Ω)
L _r (回転子 漏れインダクタンス)	回転子巻線漏れインダクタンス(H)
N _s /N _r 巻線比	固定子と回転子の巻線比(巻線型のみ)
極数P	モータの極数(偶数)
慣性モーメント	モータの慣性モーメント J(kg*m²)
トルクフラグ	内部トルク Temの出力フラグ。フラグが1に設定されると、内部トルクの出力が要求される。
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ(1:マスタ;0:スレーブ)
Im vs. Lm (Im1, Lm1)	励磁電流と励磁インダクタンスの関係を区分線形の点の組で与えます[(<i>I_{m1}, L_{m1}</i>), (<i>I_{m2, Lm2}</i>),]

全てのパラメータは固定子側に換算した値で表されています。

飽和付き三相誘導機の動特性は以下の方程式で記述されています。

$$\begin{bmatrix} v_{abc,s} \end{bmatrix} = \begin{bmatrix} R_s \end{bmatrix} \cdot \begin{bmatrix} i_{abc,s} \end{bmatrix} + L_s \cdot \frac{d}{dt} \begin{bmatrix} i_{abc,s} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \lambda_{abc,s} \end{bmatrix}$$
$$\begin{bmatrix} v_{abc,r} \end{bmatrix} = \begin{bmatrix} R_r \end{bmatrix} \cdot \begin{bmatrix} i_{abc,r} \end{bmatrix} + L_r \cdot \frac{d}{dt} \begin{bmatrix} i_{abc,r} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \lambda_{abc,r} \end{bmatrix}$$

ここで、

$$\begin{split} \begin{bmatrix} \lambda_{abc,s} \end{bmatrix} &= M_{sr} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \cdot \begin{bmatrix} i_{abc,s} \end{bmatrix} + M_{sr} \cdot \begin{bmatrix} \cos\theta & \cos\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) \\ \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\theta & \cos\left(\theta + \frac{2\pi}{3}\right) \\ \cos\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\theta \end{bmatrix} \begin{bmatrix} i_{abc,r} \end{bmatrix} \\ \begin{bmatrix} \lambda_{abc,s} \end{bmatrix} &= M_{sr} \cdot \begin{bmatrix} \cos\theta & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) \\ \cos\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) \\ \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) \\ \end{bmatrix} \cdot \begin{bmatrix} i_{abc,s} \end{bmatrix} + M_{sr} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} i_{abc,r} \end{bmatrix} \end{split}$$

この場合、インダクタンス M_{Sr} は定数ではなく、励磁電流 I_m の関数になります。励磁電流 Im とインダ クタンス Lm は、一連のデータポイント、例えば、(0, 0.041) (5, 0.035) (20, 0.03)、より算出されます。複 数のデータポイントの間では、インダクタンス Lm 値は線形補間されます。励磁電流が最小値より小さい、 または最大値より大きい場合には、インダクタンス値は始点または終点の値に固定されます。

4.6.4 直流機 (DC Machine)

直流機のシンボルとパラメータは以下のようになります。

仕様

パラメータ	機能
抵抗 Ra(電機子)	電機子巻線抵抗(Ω)
インダクタンス La (電機子)	電機子巻線インダクタンス(H)
抵抗 R _f (界磁)	界磁巻線抵抗(Ω)
インダクタンス Lf (界磁)	界磁巻線インダクタンス(H)
慣性モーメント	モータの慣性モーメント(kg*m²)
電圧 Vt(定格)	定格電機子電圧(V)
電流 la(定格)	定格電機子電流(A)
回転数 n(定格)	定格回転数(rpm)
電流 l _f (定格)	定格界磁電流(A)
トルクフラグ	内部トルク Temの出力フラグ
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ(1:マスタ、0:スレーブ)

トルクフラグを1に設定すると、モータによって発生される内部トルクが表示用のデータファイルに保存されます。

直流機の動特性は以下の方程式で記述されています。

$$v_{t} = E_{a} + i_{a} \cdot R_{a} + L_{a} \frac{di_{a}}{dt}$$
$$v_{f} = i_{f} \cdot R_{f} + L_{f} \frac{di_{f}}{dt}$$
$$E_{a} = k \cdot \phi \cdot \omega_{m}$$
$$T_{em} = k \cdot \phi \cdot i_{a}$$
$$J \cdot \frac{d\omega_{m}}{dt} = T_{em} - T_{L}$$

vt, vf, ia, itはそれぞれ電機子電圧、界磁電圧、電機子電流、界磁電流です。Eaは内部誘起電圧、ωmは 機械系の回転速度(rad/sec)です。Temは内部発生トルクで TLは負荷トルクです。内部誘起電圧と内部トル クは以下のようにも記述できます。

$$E_a = L_{af} \cdot i_f \cdot \omega_m$$
$$T_{em} = L_{af} \cdot i_f \cdot i_a$$

ここで L_{af} は電機子と界磁巻線間の相互インダクタンスです。これは定格運転条件より以下のように算出 されます。

$$L_{af} = \frac{\left(V_t - I_a \cdot R_a\right)}{I_f \cdot \omega_m}$$

直流機モデルは線形磁化特性を仮定しています。磁気飽和は考慮されていません。

例:定トルク負荷と直流機

以下に定トルク負荷 L とシャント励磁直流機の回路を示します。負荷は機械系統の基準方向に沿ってい るので、負荷トルクは L です。またスピードセンサも基準方向に沿っています。これは正の速度に対して 正の出力を与えます。

4.6.5 ブラシレス直流機(Brushless DC Machine)

三相ブラシレス直流機は永久磁石を使った同期機の一種と考えることができます。固定子には三相巻線 を、回転子には永久磁石を使っています。PSIMのブラシレス直流機のモデルでは誘導起電力が台形状の波 形となります。 三相ブラシレス直流機のシンボルとパラメータを以下に示します。 シンボル

仕様(モデルパラメータ関連)

パラメータ	機能
R(固定子抵抗)	固定子の相抵抗(Ω)
L(固定子 自己インダクタンス)	固定子の自己インダクタンス(H)
M(固定子 相互インダクタンス)	固定子の相互インダクタンス(H) 相互インダクタンス M は負の値です。巻線の構成により、相互インダクタ ンス M と自己インダクタンス L の比は通常 -1/3 から -1/2 の間になります。 もし M が不明の場合は、M = -0.4*L としたものが無難なデフォルト値とし て使えます。
Vpk / krpm	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)です。
Vrms / krpm	線間の実効誘起電圧定数、単位は V/krpm (機械系の回転速度)です。 Vpk/krpm と Vrms/krpm の値はモータのデータシートから得られるはずで す。これらの値が不明の場合は、ブラシレス機を 1000rpm で発電機として 運転し、線間電圧のピーク値と実効値を測ることでわかります。
極数 P	極数 P
慣性モーメント	モータの慣性モーメント J (kg*m²)
軸の時定数	軸の時定数(T _{shaft})
回転角の初期値	回転角の初期値 θr(電気角・度) 回転角の初期値とは時刻 t=0 の時の回転角です。回転角 0°の位置は、回転数 が正の値のとき、A 相の誘起電圧が(負から正へ)零点を横切るときの位置と して定義できます。
位置センサの進み角	位置センサの進み角 θadvance (電気角・度) 進み角とは A 相の上側のスイッチが 120°導通モードのとき、ターンオン角 と 30°の角度の差として定義できます。たとえば、A 相が 25°でオンになっ た場合は、進み角は 5°です(30-25 = 5)。
導通パルス幅	位置センサの導通パルス幅(電気角・度) 導通パルスが正のとき、全波ブリッジ・インバータの下側スイッチがオンに なります。120°導通モードのときは導通パルス幅が 120°となります。
トルクフラグ	内部発生トルク Tem の出力フラグ(1:出力あり;0:なし)
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ (1:マスタ,0:スレーブ)

パラメータ	機能
Resistance (phase-phase)	相間(Phase-to-phase)、または線間(line-to-line) 抵抗(Ω)
Inductance (phase-phase)	相間(Phase-to-phase)、または線間(line-to-line) インダクタンス(H)
Speed Constant	スピード定数 Kv、供給電圧とスピードの比(rpm/V)
Torque Constant	トルク定数 Kt、供給電流とトルクの比(N*m/A)
No. of Poles P	極数 P
Moment of Inertia	モータの慣性モーメント J (kg*m ²)
No Load Speed	無負荷定格電圧時スピード(rpm)
No Load Current	無負荷時電流(A)
Torque Flag	内部発生トルク Tem の出力フラグ(1:出力あり;0:なし)
Master/Slave Flag	マスタ/スレーブモードのフラグ (1:マスタ、0:スレーブ)

シンボルの端子は以下のとおりです。a, b, c はそれぞれ a, b, c 相の固定子巻線端子、固定子巻線は Y 結線され、n は中性点端子です。軸端子は機械軸を接続するためのもの。これらはすべてパワー端子なの で、パワー回路に接続しなければなりません。

Sa, Sb, Scはそれぞれ a, b, c相のホール効果 6 パルス位置センサの端子、センサ出力は 3 値の転流パルス(1, 0, -1)です。センサ出力の端子はすべて制御端子なので制御回路に接続して下さい。

マスタ/スレーブフラグ(Master/Slave Flag)については、「4.6.1 機械システムでの「基準方向」 (Reference Direction)」を参照してください。

三相ブラシレス直流機の方程式は以下の通りです。

$$v_a = R \cdot i_a + (L - M) \frac{di_a}{dt} + E_a$$
$$v_b = R \cdot i_b + (L - M) \frac{di_b}{dt} + E_b$$
$$v_c = R \cdot i_c + (L - M) \frac{di_c}{dt} + E_c$$

ここで、 v_a , v_b , v_c は相電圧、 i_a , i_b , i_c は相電流、R, L, Mはそれぞれ固定子の各相抵抗、自己インダクタンス、相互インダクタンスです。また、 E_a , E_b , E_c はそれぞれ a, b, c相の誘起電圧です。

誘起電圧は回転子の機械回転速度 θm と回転角 θrの関数で次のようになります。

$$E_{a} = k_{e_{a}} \cdot \omega_{m}$$
$$E_{b} = k_{e_{b}} \cdot \omega_{m}$$
$$E_{c} = k_{e_{c}} \cdot \omega_{m}$$

係数 k_{e_a}, k_{e_b}, k_{e_c}は回転角 θ_rによって決まります。このモデルでは下図に示す理想的な台形波形プロ ファイル(ideal trapezoidal waveform profile)を想定しています。同図に、A 相のホール効果センサ信号 Sa を示します。

この図で、K_{pk} は台形のピーク値(V/(rad./sec.))で、

$$k_{pk} = \frac{v_{pk} / krpm}{2} \cdot \frac{1}{1000 \cdot 2\pi / 60}$$

により定義されます。Vpk/krpm と Vrms/krpm の値を与えると、角度θは PSIM により自動的に決まり ます。

モータの発生トルクは、

$$T_{em} = (E_a \cdot i_a + E_b \cdot i_b + E_c \cdot i_c) / \omega_m$$

機械系の方程式は、

$$J\frac{d\omega_m}{dt} = T_{em} - B \cdot \omega_m - T_{load}$$
$$\frac{d\theta_r}{dt} = \frac{P}{2} \cdot \omega_m$$

ここで、Bは係数、Tloadは負荷トルク、およびPは極数です。この係数Bは慣性モーメントJと機械系の時定数Tshaftから以下のように計算されます。

$$B = \frac{J}{T_{shaft}}$$

したがって、軸の時定数 T_{shaft}は、摩擦や機械の風損の影響をうけます。軸の時定数は0に設定されている場合、摩擦項は B*ωm は無視されます。

下記の等価回路により、軸の時定数について解説します。

この回路は、軸の時定数T_{shaft}が抵抗1/BとキャパシタJによるRC時定数と等しいことを示します。したがって、軸の時定数は以下の試験によって測定することが可能です。

- モータを外部の機械的動力源に接続します。固定子側をオープン回路にし、モータを一定の速度 で駆動します。
- 機械的動力源を削除します。軸の時定数は、モータの初期速度を36.8%遅らせた時間と等しくなります。
<u>ホール効果センサについての追加説明</u>

ホール効果位置検出センサはホール・スイッチとトリガ磁石から構成されています。ホール・スイッチ は半導体スイッチ(たとえば MOSFET や BJT)で、磁界がある閾値よりも高いか低い場合に開閉します。こ れはホール効果の応用で、スイッチに外部から電流を流すと磁束密度に比例した電圧が誘起されます。ホ ール・スイッチと一体になった(もしくは近接した)信号条件回路により誘起電圧を検出するのが一般的で す。この回路により、立ち上がりが鋭くノイズ耐性が高い TTL レベルのパルスを発生し、シールドケーブ ルにより制御回路に接続することができます。三相ブラシレス直流モータの場合、3 つのホール素子を電気 角で 120°ずつずらして固定子に配置します。

トリガ磁石は別の磁石でも、あるいは回転子の永久磁石も使うことができます。別置のトリガ磁石を使 う場合、回転子の極から十分に離して配置する必要があります。そして、ホール素子に充分近くなるよう に軸に取り付けます。回転子の磁石を兼用する場合は、ホール素子を回転子の磁石に充分近く取り付けま す。これは適正な回転子の位置で漏れ磁束により励起されるようにするためです。

例:メーカのデータシートからのブラシレス DC モータパラメータ設定

モータメーカの提供するデータシートから、ブラシレス DC モータのパラメータ設定を行う例 を示します。下記に、Maxon Motor 社のブラシレス DC モータ、Maxon EC-22-16730(32V, 50W) のデータシートの値を示します。

Values at nominal voltage	
Nominal voltage (V)	32
No load speed (rpm)	38700
No load current (mA)	327
Characteristics	
Terminal resistance phase to phase (Ohm)	0.363
Terminal inductance phase to phase (mH)	0.049
Torque constant (mNm/A)	7.85
Speed constant (rpm/V)	1220
Rotor inertia (gcm2)	4.2
Other specifications	
Number of pole pairs	1
Number of phases	3

上記の数値を SI 単位系にし、PSIM のパラメータに変換すると下記の様になります。

パラメータ	值
Resistance (phase-phase)	0.363
Inductance (phase-phase)	0.049m
Speed Constant	1220
Torque Constant	7.85m
No. of Poles P	2
Moment of Inertia	4.2e-7
No Load Speed	38700
No Load Current	327m
Torque Flag	1
Master/Slave Flag	1

例:開ループ・ブラシレス直流モータの始動

以下の図に開ループのブラシレス直流モータの駆動回路を示します。モータには三相電圧型インバータ により電源を供給しています。ホール素子位置センサの出力を使って、インバータのゲート信号を調整し、 結果として6パルス運転を実現しています。

シミュレーション波形はモータ始動時の機械系回転速度(rpm)、発生トルク Tem および三相入力電流を示します。

4.6.6 他励式同期(Synchronous Machine with External Excitation)

従来型の同期機の構造は三相固定子巻線と突極または円筒型の回転子の界磁巻線、それに機種により制 動巻線からなります。

同期機モデルは、固定子回路の内部モデルによって、電圧型と電流型の2通りのモデルが存在します。 電圧型インターフェースのモデルは、固定子側に置かれた制御付き電圧源からなり、このモデルは同期機 が発電機として動作している場合、および固定子外部回路が誘導性ブランチに直列接続されているときに 適します。一方、電流型インターフェースは固定子側に置かれた制御付電流源により、このモデルは同期 機が電動機として動作している場合、および固定子回路が容量性のブランチと並列接続されているときに 効果的です。

このモデルのシンボルと仕様を以下に示します。 シンボル

仕様	
パラメータ	機能
R _s (固定子抵抗)	固定子巻線抵抗(Ω)
L _s (固定子 漏れインダクタンス)	固定子巻線漏れインダクタンス(H)
Ldm(d軸磁化インダクタンス)	d 軸磁化インダクタンス(H)
Lqm(q軸磁化インダクタンス)	q 軸磁化インダクタンス(H)
R _f (界磁)	界磁巻線抵抗(Ω)
L _{fl} (界磁)	界磁巻線漏れインダクタンス(H)
Rdr(制動巻線)	制動巻線 d 軸抵抗(Ω)
L _{drl} (制動巻線)	制動巻線 d 軸漏れインダクタンス(H)
R _{qr} (制動巻線)	制動巻線 q 軸抵抗(Ω)
L _{qrl} (制動巻線)	制動巻線 q 軸漏れインダクタンス(H)
Ns/Nf(実効巻線比)	固定子と界磁回路の実効巻線比
極数P	モータの極数(偶数)
慣性モーメント	モータの慣性モーメント J(kg*m²)
トルクフラグ	内部トルク Temの出力フラグ。フラグが 1 に設定されると、内部トルクの 出力が要求される。
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ(1:マスタ;0:スレーブ)

全てのパラメータは固定子側に参照した値で表されています。

三相同期機の動特性は以下の方程式で記述されています。

$$\begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} I \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \lambda \end{bmatrix}$$

ここで、

$$\begin{bmatrix} v \end{bmatrix} = \begin{bmatrix} v_a \ v_b \ v_c \ v_f \ 0 \ 0 \end{bmatrix}^T \qquad \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} i_a \ i_b \ i_c \ i_f \ i_{dr} \ i_{qr} \end{bmatrix}^T$$
$$\begin{bmatrix} R \end{bmatrix} = diag \begin{bmatrix} R_s \ R_s \ R_s \ R_f \ R_{dr} \ R_{qr} \end{bmatrix}$$
$$\begin{bmatrix} \lambda \end{bmatrix} = \begin{bmatrix} \lambda_a \ \lambda_b \ \lambda_c \ \lambda_f \ \lambda_{dr} \ \lambda_{qr} \end{bmatrix}^T = \begin{bmatrix} L \end{bmatrix} \cdot \begin{bmatrix} I \end{bmatrix}$$

ここで、インダクタンス行列は以下のように定義しています。 $\begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} L_{11} \end{bmatrix} & \begin{bmatrix} L_{12} \end{bmatrix} \\ \begin{bmatrix} L_{12} \end{bmatrix}^T & \begin{bmatrix} L_{22} \end{bmatrix}$

$$\begin{bmatrix} L_{11} \end{bmatrix} = \begin{bmatrix} L_s + L_o + L_2 \cos(2\theta_r) & -\frac{L_o}{2} + L_2 \cos(2\theta_r - \frac{2\pi}{3}) & -\frac{L_o}{2} + L_2 \cos(2\theta_r + \frac{2\pi}{3}) \\ -\frac{L_o}{2} + L_2 \cos(2\theta_r - \frac{2\pi}{3}) & L_s + L_o + L_2 \cos(2\theta_r + \frac{2\pi}{3}) & -\frac{L_o}{2} + L_2 \cos(2\theta_r) \\ -\frac{L_o}{2} + L_2 \cos(2\theta_r + \frac{2\pi}{3}) & -\frac{L_o}{2} + L_2 \cos(2\theta_r) & L_s + L_o + L_2 \cos(2\theta_r - \frac{2\pi}{3}) \end{bmatrix}$$

$$\begin{bmatrix} L_{12} \end{bmatrix} = \begin{bmatrix} L_{sf}\cos(2\theta_r) & L_{sd}\cos(2\theta_r) & -L_{sq}\sin(2\theta_r) \\ L_{sf}\cos\left(2\theta_r - \frac{2\pi}{3}\right) & L_{sd}\cos\left(2\theta_r - \frac{2\pi}{3}\right) & -L_{sq}\sin\left(2\theta_r - \frac{2\pi}{3}\right) \\ L_{sf}\cos\left(2\theta_r + \frac{2\pi}{3}\right) & L_{sd}\cos\left(2\theta_r + \frac{2\pi}{3}\right) & -L_{sq}\sin\left(2\theta_r + \frac{2\pi}{3}\right) \end{bmatrix}$$
$$\begin{bmatrix} L_{22} \end{bmatrix} = \begin{bmatrix} L_f & L_{fdr} & 0 \\ L_{fdr} & L_{dr} & 0 \\ 0 & 0 & L_{qr} \end{bmatrix}$$

ここで、
$$\theta$$
は回転子角度です。また、発生トルクは以下の通りです。

$$T = \frac{P}{2} \cdot \begin{bmatrix} I \end{bmatrix} \cdot \frac{d}{d\theta_r} \begin{bmatrix} L \end{bmatrix} \cdot \begin{bmatrix} I \end{bmatrix}$$

機械系の方程式は以下のように表されます。

$$J \cdot \frac{d\omega_m}{dt} = T_{em} - T_{load}$$

$$\frac{d\Theta_r}{dt} = \frac{P}{2} \cdot \omega_r$$

入力パラメータと方程式のパラメータの関係は、以下のように示されます。 $L_{dm} = 1.5 \cdot (L_o + L_2)$

$$L_{qm} = 1.5 \cdot (L_o - L_2)$$
$$L_{sf} = \left(\frac{N_f}{N_s}\right)^2 \cdot L_{dm}$$
$$L_{sd} = L_{dm}$$
$$L_{sq} = L_{qm}$$
$$L_{fl} = L_f - L_{sf}$$
$$L_{fdr} = L_{dm}$$
$$L_{drl} = L_{dr} - L_{dm}$$
$$L_{qrl} = L_{qr} - L_{qm}$$

4.6.7 永久磁石同期機 (Permanent Magnet Synchronous Machine)

三相の永久磁石を使った同期機は固定子に三相巻線を、回転子には永久磁石を使っています。ブラシレ ス直流機と違い、同期機は誘起電圧が正弦波です。

永久磁石同期機のシンボルとパラメータを以下に示します。

ンンヘル	シ	ンボル	
------	---	-----	--

4	- 北主	
11	132	

パラメータ	機能
R _s (固定子抵抗)	固定子の巻線抵抗(Ω)
Ld(d 軸インダクタンス)	固定子の d 軸インダクタンス(H)
	固定子の q 軸インダクタンス(H)
Lq(q 軸インダクタンス)	d 軸は磁石の中心を通り、q 軸はふたつの磁石の中間を通ります。q 軸は d
	軸に比べて進んでいます。
	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)です。
Val / krom	Vpk/krpm の値はモータのデータシートから得られるはずです。これらの値
турк / кірін	が不明の場合は、同期機を 1000rpm で発電機として運転し、線間電圧のピ
	ーク値を測ることでわかります。
極数 P	極数 P
慣性モーメント	モータの慣性モーメント J (kg*m²)
軸の時定数	軸の時定数(T _{shaft})
ローター角の初期値	初期ローター角(゜)
トルクフラグ	内部発生トルク Tem の出カフラグ(1:出力あり;0:なし)
	マスタ/スレーブモードのフラグ (1:マスタ,0:スレーブ)。マスタ/スレー
マスタ/スレーブフラグ	ブのフラグの設定により、モータの動作モードが変わります。詳しくは4.6.1
	を参照ください。

シンボルの端子は以下のとおりです。a, b, c はそれぞれ a, b, c 相の固定子巻線端子、固定子巻線は Y 結線され、n は中性点端子です。軸端子は機械軸を接続するためのもの。これらはすべてパワー端子なの で、パワー回路に接続しなければなりません。

マスタ/スレーブフラグの定義と使用についての詳細は、「4.6.1 機械システムでの「基準方向」 (Reference Direction)」を参照してください。

永久磁石同期機の方程式は以下で表されます。

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \lambda_a \\ \lambda_b \\ \lambda_c \end{bmatrix}$$

ここで、*v*a, *v*b, *v*c は相電圧、*i*a, *i*b, *i*c は相電流、Rs は固定子の各相抵抗です。また、*λ*a, *λ*b, *λ*c はそ れぞれ a, b, c 相の交鎖磁束です。交鎖磁束は以下の式で表せます。

$$\begin{bmatrix} \lambda_a \\ \lambda_b \\ \lambda_c \end{bmatrix} = \begin{bmatrix} L_{aa} & L_{ab} & L_{ac} \\ L_{ba} & L_{bb} & L_{bc} \\ L_{ca} & L_{cb} & L_{cc} \end{bmatrix} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \lambda_{pm} \begin{bmatrix} \cos(\theta_r) \\ \cos\left(\theta_r - \frac{2\pi}{3}\right) \\ \cos\left(\theta_r + \frac{2\pi}{3}\right) \end{bmatrix}$$

ここで、 θ rは回転子の電気角、 λ pm は以下の式で決まる係数です。

$$\lambda_{\rm pm} = \frac{60 \cdot V_{pk} / krpm}{\pi \cdot P \cdot 1000 \cdot \sqrt{3}}$$

Pは極数です。

固定子の自己および相互インダクタンスは回転子の位置により変化し、以下の式で決まります。 $L_{aa} = L_{sl} + L_{a} + L_{2} \cdot \cos(2\theta_{r})$

$$\begin{split} L_{bb} &= L_{sl} + L_o + L_2 \cdot \cos\left(2\theta_r + \frac{2\pi}{3}\right) \\ L_{cc} &= L_{sl} + L_o + L_2 \cdot \cos\left(2\theta_r - \frac{2\pi}{3}\right) \\ L_{ab} &= L_{ba} = -\frac{1}{2}L_o + L_2 \cdot \cos\left(2\theta_r - \frac{2\pi}{3}\right) \\ L_{ac} &= L_{ca} = -\frac{1}{2}L_o + L_2 \cdot \cos\left(2\theta_r + \frac{2\pi}{3}\right) \\ L_{bc} &= L_{cb} = -\frac{1}{2}L_o + L_2 \cdot \cos(2\theta_r) \end{split}$$

ここで、Lsは固定子の漏れインダクタンスです。

abc フレームの変数は、以下の式により dq0 フレームに変換することができます。

$$\begin{bmatrix} x_d \\ x_q \\ x_0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos(\theta_r) & \cos\left(\theta_r - \frac{2\pi}{3}\right) & \cos\left(\theta_r + \frac{2\pi}{3}\right) \\ -\sin(\theta_r) & -\sin\left(\theta_r - \frac{2\pi}{3}\right) & -\sin\left(\theta_r + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix}$$

また、逆変換は以下の式で表せます。 「

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = \begin{bmatrix} \cos(\theta_r) & -\sin(\theta_r) & 1 \\ \cos\left(\theta_r - \frac{2\pi}{3}\right) & -\sin\left(\theta_r - \frac{2\pi}{3}\right) & 1 \\ \cos\left(\theta_r + \frac{2\pi}{3}\right) & -\sin\left(\theta_r + \frac{2\pi}{3}\right) & 1 \end{bmatrix} \cdot \begin{bmatrix} x_d \\ x_q \\ x_0 \end{bmatrix}$$

٦

また、d 軸および q 軸インダクタンスは以下のように書けます。

$$L_{d} = L_{s} + \frac{3}{2}L_{o} + \frac{3}{2}L_{2}$$
$$L_{q} = L_{s} + \frac{3}{2}L_{o} - \frac{3}{2}L_{2}$$

発生トルクは次の式で計算されます。

$$T_{em} = -\frac{P}{2} \cdot L_2 \cdot \begin{bmatrix} i_a & i_b & i_c \end{bmatrix} \cdot \begin{bmatrix} \sin(2\theta_r) & \sin\left(2\theta_r - \frac{2\pi}{3}\right) & \sin\left(2\theta_r + \frac{2\pi}{3}\right) \\ \sin\left(2\theta_r - \frac{2\pi}{3}\right) & \sin\left(2\theta_r + \frac{2\pi}{3}\right) & \sin(2\theta_r) \\ \sin\left(2\theta_r + \frac{2\pi}{3}\right) & \sin(2\theta_r) & \sin\left(2\theta_r - \frac{2\pi}{3}\right) \end{bmatrix} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} - \frac{P}{2} \cdot \lambda_{pm} \cdot \begin{bmatrix} i_a & i_b & i_c \end{bmatrix} \cdot \begin{bmatrix} \sin(\theta_r) \\ \sin\left(\theta_r - \frac{2\pi}{3}\right) \\ \sin\left(\theta_r + \frac{2\pi}{3}\right) \\ \sin\left(\theta_r + \frac{2\pi}{3}\right) \end{bmatrix}$$

dq0 フレームでは、発生トルクは以下の式で表されます。

$$T_{em} = \frac{3}{2} \cdot \frac{P}{2} \cdot (\lambda_{pm} i_q + (L_d - L_q) i_d i_q)$$

一方、機械系の方程式は

$$J \cdot \frac{d\omega_m}{dt} = T_{em} - B \cdot \omega_m - T_{load}$$

$$\frac{d\theta_r}{dt} = \frac{P}{2} \cdot \omega_r$$

ここで、Bは係数、Tload は負荷トルク、およびPは極数です。この係数Bは慣性モーメントJと機械系の時定数Tshaft から以下のように計算されます。

$$B = \frac{J}{\tau_{shaft}}$$

4.6.8 飽和付永久磁石同期機 (Permanent Magnet Synchronous Machine with Saturation)

三相の飽和付永久磁石同期機は、d 軸/q 軸インダクタンスを d 軸/q 軸電流の関数として設定することが できる永久磁石同期機です。d 軸/q 軸インダクタンスと d 軸/q 軸電流の関係は別ファイルに記述したルッ クアップテーブルによって決定されます。

飽和付永久磁石同期機のシンボルとパラメータを以下に示します。

シンボル

仕様

パラメータ	機能
Rs(固定子抵抗)	固定子の巻線抵抗(Ω)
L _s (固定子 漏れインダクタンス)	固定子の漏れインダクタンス(H)
Vpk / krpm	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)です。 Vpk/krpm の値はモータのデータシートから得られるはずです。これらの値 が不明の場合は、同期機を 1000rpm で発電機として運転し、線間電圧のピ ーク値を測ることでわかります。
極数P	極数 P
慣性モーメント	モータの慣性モーメントJ(kg*m²)
軸の時定数	軸の時定数 T _{shaft} (S)。 摩擦係数 B と関係する。ただし、B=J / T _{shaft}
ローター角の初期値	初期のローター角(゜)
Ld ルックアップテーブル ファイル	L _{dm} 用ルックアップテーブルのファイル名
L _q ルックアップテーブル ファイル	L _{qm} 用ルックアップテーブルのファイル名
dq フラグ	ルックアップテーブル用のフラグ(0:Ldm,Lqm は ld, lq の関数; 1:Ldm,Lqm は電流ベクトル lm と角度の関数)
変換フラグ	変換係数フラグ(詳細は以下を参考のこと)
トルクフラグ	内部発生トルク Tem の出力フラグ(1:出力あり;0:なし)
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ (1:マスタ,0:スレーブ)。マスタ/スレー ブのフラグの設定により、モータの動作モードが変わります。詳しくは4.6.1 を参照ください。

d 軸, q 軸のインダクタンス L_d, L_qと磁化インダクタンス L_{dm}, L_{qm} との関係は以下の通りになります。 $L_d = L_s + L_{dm}$

$$L_q = L_s + L_{qm}$$

ただし、Ls は固定子の漏れインダクタンスです。通常は Ls が非常に小さいので、Ld を Ldm 、Lq を Lqm と見なすことができます。

変換フラグはabcの三相静止座標からdqの回転座標への座標変換の変換係数を決定します。 変換フラグが0の時

$$\begin{bmatrix} I_d \\ I_q \end{bmatrix} = \frac{2}{3} \cdot \begin{bmatrix} \cos(\theta_r) & \cos\left(\theta_r - \frac{2\pi}{3}\right) & \cos\left(\theta_r + \frac{2\pi}{3}\right) \\ -\sin(\theta_r) & -\sin\left(\theta_r - \frac{2\pi}{3}\right) - \sin\left(\theta_r + \frac{2\pi}{3}\right) \end{bmatrix} \cdot \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$
$$I_m = \sqrt{I_d^2 + I_q^2}$$

$$\theta_m = \operatorname{atan} 2(I_q, I_d)$$

電流ベクトルの位相角の単位は"度"で、範囲は-180°から 180°になっています。 また、変換フラグが 1 の時

$$\begin{bmatrix} I_d \\ I_q \end{bmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} \cos(\theta_r) & \cos(\theta_r - \frac{2\pi}{3}) & \cos(\theta_r + \frac{2\pi}{3}) \\ -\sin(\theta_r) & -\sin(\theta_r - \frac{2\pi}{3}) - \sin(\theta_r + \frac{2\pi}{3}) \end{bmatrix} \cdot \begin{bmatrix} i_d \\ i_b \\ i_c \end{bmatrix}$$
$$I_m = \sqrt{\frac{2}{3}} \cdot \sqrt{I_d^2 + I_q^2}$$

 $\Theta_m = \operatorname{atan} 2(-I_d, I_q)$

電流ベクトルの位相角の単位は"度"で、範囲は 0°から 360°になっています。 L_{dm} とL_{am} のルックアップテーブルは以下のフォーマットを持っています。

> m, n V_{r,1}, V_{r,2}, ..., V_{r,m} V_{c,1}, V_{c,2}, ..., V_{c,n} L_{1,1}, L_{1,2}, ..., L_{1,n} L_{2,1}, L_{2,2}, ..., L_{2,n}

L_{m,1}, L_{m,2}, ..., L_{m,n}

ただし、mは行の数、nは列の数、Vrは行のベクトル、Vcは列のベクトル、Lijはi行目とj列目における Lam 或いは Lqm の値[H]です。ベクトル Vr と Vcは単調増加である必要があります。

dq フラグが 0 の場合、ベクトル Vrには lqのデータを、ベクトル Vcには laのデータを設定し、Lijには該 当する la, lqの場合のインダクタンス値を設定します。

dq フラグが 1 の場合、ベクトル Vrには θ_m のデータを、ベクトル Vcには Imのデータを設定し、Lijには該当する Im, θ_m の場合のインダクタンス値を設定します。

入力がルックアップテーブルで定義された二つのポイントの間にあるとき、補間された値が計算に使用 されます。また、入力が最小値より小さいまたは最大値より大きいとき、入力に最小値または最大値が代 入されます。ルックアップテーブルの Ldm と Lqm を ld と lqの線形関数として定義すれば、この飽和付永久 磁石同期機モデルは線形永久磁石同期機モデルとして使うことが可能です。 以下にルックアップテーブルの例を示します

4,15 -5.7155 -4.8990 -4.0825 -3.2660 -5.7155 -4.8990 -4.0825 -3.2660 -2.4495 -1.6330 -0.8165 0 0.8165 1.6330 2.4495 3.2660 4.0825 4.8990 5.7155 0.0109 0.0109 0.0107 0.0104 0.0102 0.0100 0.0098 0.0098 0.0098 0.0100 0.0102 0.0104 0.0107 0.0109 0.0109 0.0109 0.0109 0.0109 0.0106 0.0109 0.0106 0.0105 0.0105 0.0106 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0111 0.0108 0.0106 0.0106 0.0106 0.0108 0.0111 0.0109 0.0109 0.0109 0.0110 0.0110 0.0111 0.0110 0.0109 0.0108 0.0107 0.0108 0.0109 0.0110 0.0111 0.0110 0.0111

4.6.9 スイッチトリラクタンスモータ (Switched Reluctance Machine)

三相、四相、五相の3つのタイプのスイッチトリラクタンスモータモデルが用意されています。 **シンボル**

仕様

パラメータ	機能
抵抗	固定子各相抵抗(Ω)
インダクタンス Lmin	各相インダクタンスの最小値(H)
インダクタンス Lmax	各相インダクタンスの最大値(H)
θ _{min} (°)	インダクタンスが最低にある期間(度)
θ _{max} (°)	インダクタンスが最大にある期間(度)
固定子極数	固定子極数
回転子極数	回転子極数
慣性モーメント	モータの慣性モーメント J (kg*m ²)
トルクフラグ	内部トルク Temの出力フラグ。
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ (1:マスタ、0:スレーブ)

マスタ/スレーブフラグの設定により、モータの動作モードが変わります(「4.6.1 機械システムでの「基準方向」(Reference Direction)」参照)。

ノードの役割は以下のとおりです。a+, a-, b+, b-, c+, c- はそれぞれ a, b, c相の固定子巻線端子。 軸ノード(shaft node)は機械軸の接続端子。これらの端子はパワー端子なのでパワー回路に接続しなければ なりません。

スイッチトリラクタンスモータの方程式は、各相あたり次のようになります。

$$v = i \cdot R + \frac{d(L \cdot i)}{dt}$$

ここで、vは相電圧、iは相電流、Rは相回路抵抗、Lは相回路インダクタンスです。相回路インダクタンスしは以下の図に示すように回転の関数です。インダクタンスの変化は半波対称で180度の後は繰り返しとなります。

回転角は、固定子と回転子の歯が完全にかみ合っている場合を θ = 0 とします。インダクタンスの値は、 上昇(rising)、頂上(flat-top)、降下(falling)、底(flat-bottom)の 4 段階のいずれかになります。

ここで定数 k を $k = \frac{L_{max} - L_{min}}{\theta}$ と定義すると、インダクタンス L を以下のように回転角の関数として表現できます。

$$L = L_{max} \qquad \text{for} \quad 0 \le \theta \le \frac{\theta_{max}}{2}$$

$$L = L_{max} - k \cdot \left(\theta - \frac{\theta_{max}}{2}\right) \qquad \text{for} \quad \frac{\theta_{max}}{2} \le \theta \le \frac{\theta_{max}}{2} + \theta_{rf}$$

$$L = L_{min} \qquad \text{for} \quad \frac{\theta_{max}}{2} + \theta_{rf} \le \theta \le \frac{\theta_{max}}{2} + \theta_{rf} + \theta_{min}$$

$$L = L_{min} + k \cdot \left(\theta - \frac{\theta_{max}}{2} - \theta_{rf} - \theta_{min}\right) \qquad \text{for} \quad \frac{\theta_{max}}{2} + \theta_{rf} + \theta_{min} \le \theta \le \frac{\theta_{max}}{2} + 2\theta_{rf} + \theta_{min}$$

$$L = L_{max} \qquad \text{for} \quad \frac{\theta_{max}}{2} + 2\theta_{rf} + \theta_{min} \le \theta \le 180^{\circ}$$

各相の発生トルクは以下により求めています。

$$T_{em} = \frac{1}{2} \cdot i^2 \cdot \frac{dL}{dE}$$

上記のようなインダクタンスの表現により、各段階での発生トルクは、

$$T_{em} = i^{2} \cdot \frac{\kappa}{2}$$

$$T_{em} = 0$$

$$T_{em} = -i^{2} \cdot \frac{k}{2}$$

$$\Gamma_{em} = 0$$

$$[降下]$$

$$T_{em} = 0$$

$$[底]$$

なお、このモデルでは飽和を考慮していません。

4.6.10 非線形スイッチトリラクタンスモータ (Nonlinear Switched Reluctance Machine)

以前のセクションのスイッチトリラクタンスモータモデルでは、インダクタンスは回転子位置にだけに 依存します。更に、インダクタンスは頂上(flat-top)、と底(flat-bottom)の時は固定です。この三相モデルで は、インダクタンスと回転子位置の関係だけではなく、インダクタンスと電流の関係も非線形に定義する ことができます。インダクタンスと回転子位置の関係及びインダクタンスと電流の関係は二次元のルック アップテーブルを通して定義されます。

 1.44
 AT 100

17 14	
パラメータ	機能
抵抗	固定子各相抵抗(Ω)
固定子極数	固定子極数
回転子極数	回転子極数
インダクタンス	ロータ位置と電流に対してインダクタンスの二次元のテーブルを保存する
テーブルファイル	ファイル名
慣性モーメント	モータの慣性モーメント J (kg*m ²)
トックコーグ	内部トルク Temの出力フラグ。フラグを1に設定すると内部トルクの出力を
トルソノフソ	要求できます。
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ (1:マスタ、0:スレーブ)

インダクタンステブールファイルのフォーマットは以下の通りです。

 $\begin{array}{c} m, n \\ \theta_1, \theta_2, ..., \theta_m \\ l_1, l_2, ..., l_n \\ L_{1,1}, L_{1,2}, ..., L_{1,n} \\ L_{2,1}, L_{2,2}, ..., L_{2,n} \end{array}$

Lm,1, Lm,2, ..., Lm,n

...

ここで、mは行の数、nは列の数、01~0mは回転子位置(単位:degree)の行のベクトル、I1~Inは相電流(単位:A)の列のベクトル、そして LijはI行目とj列目におけるインダクタンス値[H]です。例えば、回転子位置 02、相電流I1の場合、インダクタンスはL21です。半波対称のために、0~180度のインダクタンス値だけ が必要です。また、行ベクトルと列ベクトルは増加である必要があります。

単相のリアクタンススイッチトリアクタンスモータの方程式は。

$$v = i \cdot R + \frac{d(L \cdot i)}{dt}$$

vは相電圧、Iは相電流、Rは一相分の抵抗であり、Lはロータ角度とルックアップテーブルによって定 義される電流の現在の両方の値に依存する一相分のインダクタンスです。

一相あたりに発生するトルクは、次のとおりです。

$$T_{em} = \frac{dW_{co}}{d\theta}$$

Wcoは以下のように定義されます。

$$W_{co} = \int_{0}^{i_{o}} (L \cdot i) \cdot di$$

積分および微分の計算は、インダクタンスルックアップテーブルの値を使用して行われています。

4.6.11 モータ制御ブロック (Motor Control Blocks)

以下の制御ブロックが提供されています。

- 最大トルク制御 (Maximum-Torque-Per-Ampere Control)
- 弱め磁束制御 (Field Weakening Control)

4.6.11.1 最大トルク制御 (Maximum-Torque-Per-Ampere Control)

PSIM モータドライブモジュールには、2 種類の最大トルク制御(Maximum-Torque-Per-Ampere control: MTPA control)が用意されています。下図の左が線形永久磁石同期電動機(Linear IPM)MTPA、右が非線形 (NL)MTPA です。

シンボル

仕様(線形 IPM 用 MTPA)

パラメータ	機能
Ld (d 軸インダクタンス)	PMSM の d 軸インダクタンス(H)
Lq (q 軸インダクタンス)	PMSM の q 軸インダクタンス(H)
Vpk / krpm	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)です。
極対数	極対数
最大インバータ電流	最大インバータ出力電流の振幅(ピーク値)(A)
基底電圧	単位システムあたりの基底電圧 Vb(V)
基底電流	単位システムあたりの基底電流 lb(A)
基底速度	単位システムあたりの基底速度 Wmb(rad/sec)

IPM 用の最大トルク制御ブロックには、以下の入出力があります。

ls インバータ電流の振幅指令(入力)

- ld d 軸電流指令(出力)
- lq q 軸電流指令(出力)

基底値 Vb、lb、Wmb が全て1 に設定されている場合、全ての入出力量は実際の値になります。このブロックは、線形 PMSM の制御のみが対象です。電流振幅指令が決まれば、モータにより最大トルクが生成されるように、このブロックは d 軸と q 軸の電流指令である ld と lq を計算します。

このブロックは PMSM およびインバータの定格電流が必要となります。

仕様(非線形 IPM 用 MPTA)

パラメータ	機能
最大インバータ電流	インバータ最大出力電流振幅(ピーク値)(A)
基底電流	単位システムあたりの基底電流 Ib(A)

非線形 IPM 用の最大トルク制御ブロックには、以下の入出力があります。Ld、Lq、Lambda を除く全て はユニット毎の値です。

入力信号

ls インバータ電流の振幅指令

Ld d 軸インダクタンス(H)

Lq q軸インダクタンス(H)

Lambda 固定子鎖交磁束のピーク(Wb)

出力信号

ld

d 軸電流指令

lq q軸電流指令

基底値 bが1に設定されている場合、電流の入出力量は実数になります。

非線形 IPM では、d 軸および q 軸インダクタンス、誘起電圧定数はモータの電流の関数になります。電流振幅指令とインバータの定格電流が決まれば、モータにより最大トルクが生成されるように、このブロックは d 軸と q 軸の電流指令である ld と lq を計算します。

4.6.11.2 弱め磁束制御 (Field Weakening Control)

下図に弱め磁束制御ブロックのシンボルを示します。

シンボル

仕様(弱め磁束制御、IPM)(Field Weakening IPM)

パラメータ	機能
Rs(固定子抵抗)	固定子の巻線抵抗(Ω)
Ld(d 軸インダクタンス)	PMSM の d 軸インダクタンス(H)
Lq(q 軸インダクタンス)	PMSM の q 軸インダクタンス(H)
Vpk / krpm	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)です。
極対数	極対数
最大インバータ電流	インバータ最大出力電流の振幅(ピーク)(A)
最大インバータ電圧	インバータ最大出力電圧の振幅(位相ピーク)(V)
基底電圧	単位システムあたりの基底電圧 Vb(V)
基底電流	単位システムあたりの基底電流 lb(A)
基底速度	単位システムあたりの基底速度 Wmb(rad/sec)

IPM 用の弱め磁束制御ブロックには、以下の入出力信号があります。

入力信号

ls インバータ電流の振幅指令

- Vdc DC バスの電圧フィードバック
- Wm モータの機械系の回転速度(rad/sec)
- 出力信号

ld d 軸電流指令

lq q軸電流指令

このブロックは線形永久磁石同期電動機(PMSM)のみに適用されます。機械速度が一定の値より高くなる と、モータは最大トルクを出力できなくなります。代わりに、モータの定格出力により制限されます。DC バス電圧とモータ速度、電流振幅指令が決まれば、最大出力を得る為に、弱め磁東ブロックが d 軸と q 軸 の電流指令である la と lg を計算します。

このブロックは PMSM およびインバータの定格電圧、定格電流が必要となります。

±様(弱め磁束制御	, 非線形 IPM)(Field Weakening Non-linear IPM)
-----------	--

パラメータ	機能
極対数	極対数
最大インバータ電流	インバータ最大出力電流の振幅(ピーク)(A)
最大インバータ電圧	インバータ最大出力電圧の振幅(位相ピーク)(V)
基底電圧	単位システムあたりの基底電圧 Vb(V)
基底電流	単位システムあたりの基底電流 lb(A)
基底速度	単位システムあたりの基底速度 Wmb(rad/sec)

非線形 IPM 用の弱め磁束制御ブロックには、以下の入出力があります。Ld、Lq、Lambda を除く全ては ユニット毎の値です。基底値 V_b、I_b、Wm_bが全て1に設定されている場合、全ての入出力量は実数になり ます。

入力信号

- ls インバータ電流の振幅指令
- Ld d軸インダクタンス
- Lq q軸インダクタンス
- Lambda 固定子鎖交磁束のピーク
- Vdc DC バスの電圧フィードバック
- Wm モータの機械系の回転速度(rad/sec)

出力信号

- ld d 軸電流指令
- lq q軸電流指令

このブロックは非線形埋込構造永久磁石同期電動機(Nonlinear PMSM IPM)のみに適用されます。SPM 型には適用されません。

機械速度が一定の値より高くなると、モータは最大トルクを出力できなくなります。代わりに、モータの定格出力により制限されます。DC バス電圧とモータ速度、電流振幅指令、インバータの定格が決まれば、最大出力を得る為に、弱め磁束ブロックが d 軸と q 軸の電流指令である la と lg を計算します。

仕様(弱め磁界制御、SPM)(Field Weakening SPM)

パラメータ	機能
Ld(d 軸インダクタンス)	PMSM の d 軸インダクタンス(H)
Vpk / krpm	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)です。
極対数	極対数
最大インバータ電流	インバータ最大出力電流の振幅(ピーク)(A)
最大インバータ電圧	インバータ最大出力電圧の振幅(位相ピーク)(V)
基底電圧	単位システムあたりの基底電圧 Vb(V)
基底電流	単位システムあたりの基底電流 lb(A)
基底速度	単位システムあたりの基底速度 Wmb(rad/sec)

本ブロックには、以下の入出力があります。Ld、Lq、Lambda を除く全てはユニット毎の値です。基底 値 Vb、lb、Wmbが全て1に設定されている場合、全ての入出力量は実数になります。

入力信号

- ls インバータ電流の振幅指令
- Vdc DC バスの電圧フィードバック
- Wm モータの機械系の回転速度(rad/sec)
- 出力信号
 - ld d 軸電流指令

lq q軸電流指令

このブロックは線形表面実装構造永久磁石同期電動機(Linear SPM PMSM)のみに適用されます。IPM 型には適用されません。SPM では、d 軸と q 軸のインダクタンスは同じになります。

機械速度が一定の値より高くなると、モータは最大トルクを出力できなくなります。代わりに、モータの定格出力により制限されます。DC バス電圧とモータ速度、電流振幅指令、インバータの定格が決まれば、最大出力を得る為に、弱め磁束ブロックが d 軸と q 軸の電流指令である la と lgを計算します。

仕様(弱め磁界制御、誘導機)(Field Weakening Induction Motor)

パラメータ	機能
R₅(固定子抵抗)	固定子巻線の抵抗(Ohm)
Lls (固定子 漏れインダクタンス)	固定子漏れインダクタンス(H)
Rr (回転子抵抗)	回転子巻線の抵抗(Ohm)
Llr (回転子 漏れインダクタンス)	回転子漏れインダクタンス(H)
Lm (磁化)	磁化インダクタンス(H)
極対数	極対数
定格速度	定格速度(rpm)
周波数	交流電源の周波数(Hz)
線間電圧	交流電源の線間電圧(V)
基底電圧	単位システムあたりの基底電圧 Vb(V)
基底電流	単位システムあたりの基底電流 Ib(A)

誘導機用の弱め磁束制御ブロックには、以下の入出力があります。基底値 Vb、Ib、Wmbが全て1に設定 されている場合、全ての入出力量は実数になります。

入力信号

Vdc DC バスの電圧

We 固定子の電気的な速度(基本値はWmbになります)

出力信号

ld d 軸電流指令

本ブロックは線形誘導機のみに適用されます。

機械速度が一定の値より高くなると、モータは最大トルクを出力できなくなります。代わりに、モータの定格出力により制限されます。DCバス電圧とモータ速度、電流振幅指令が決まれば、最大出力を得る為に、弱め磁束ブロックが d 軸電流指令である laを計算します。

4.7 MagCoupler モジュール (MagCoupler Module)

MagCouplerモジュール はPSIM とJMAG の連成シミュレーションを行なうためのインターフェースを 提供します。JMAG は電気機器、アクチュエータやその他電気・電子機器または部品の電磁界解析ソフト ウェアです。MagCoupler モジュールを使えば、PSIMによるパワーエレクトロニクスとその制御、そして JMAGの電磁界解析を同時に実行することができます。

MagCouplerモジュールはMagCouplerブロックとMagCoupler-DLブロックの二つがあり、これらはそれ ぞれセクション4.9で紹介する機械素子と速度/トルク/位置のセンサにあたります。

MagCouplerブロックとMagCoupler-DLブロックの違いは以下の通りです。

- 「全体のシミュレーション時間短縮可能」

MagCoupler ブロックでは、PSIM と JMAG は同じ時間ステップで実行します。MagCoupler-DL ブロックは違う時間ステップで実行させることもできます。これにより、比較的時間の かかる JMAG 側の時間ステップだけを長くして、全体のシミュレーション時間を短くする ことも可能です。

-「電流入力可能」

MagCoupler ブロックのインタフェースポートは信号ポートであり、電流を入出力すること が出来ません。よって電流入力をブロックに接続するためには、まずこれを電圧信号に変換 しなければなりません。一方、MagCoupler-DL ブロックの入出力は電力の入出力ポートで あり、通常の電力回路のノードと同様の働きを持ちます。(つまり、電圧が加わり、電流がノ ードに流入、流出する現象が表現されるということです。)この違いから、MagCoupler-DL ブロックの PSIM と JMAG 間のインタフェースはさらに現実に則したをものになっている といえます。

MagCoupler を使用する場合、PSIM 上でJMAG がインストールされているディレクトリか、JMAGの DLLファイル(「jbdll.dll」と「RT_Dll.dll」)のあるディレクトリを設定する必要があります。PSIMにJMAG のディレクトリを設定するには、Option→Set Path を選択し、Add Folder ボタンを押して、PSIM検索パ スにJMAGのディレクトリを追加してください。

また、MagCoupler を使用するためには、Internet Explorer Ver.6.0 以降が必要なことにご注意ください。Ver.5.x 以前のInternet Explorer がインストールされているコンピュータではMagCoupler は正常に動作しません。

4.7.1 MagCoupler-DL ブロック (MagCoupler-DL Block)

PMSM デバイスの MagCoupler-DL ブロックは、PMSM デバイスのインターフェースを分かり易く表しています。

シンボル

≁	⊢鳺	
	51不	

パラメータ	機能
ネットリスト XML ファイル	XML ファイルは PSIM と JMAG のインターフェー スを定義しており、xml の拡張子を持っています。
JMAG 入力ファイル	JMAG の入力ファイルです。拡張子.jcf を持ってい ます。.xml と.jcf ファイルは同じディレクトリに入 っていなければなりません。
JMAG ケーステキスト	JMAG 回路へのコメントです。
端子名	ブロックのノード名

このブロックシンボル図内では、電源ノード(A、B、そして C)はブロックの一番上に置かれており、左から右へ配置されています。機械の軸ノードはブロックの左と右に置かれており、右が最初の軸ノード(上図のノード M+)左が二番目の軸ノード(上図のノード M-)です。

電力回路と機械軸ノードは PSIM と JMAG のデータファイル間のインターフェースと同様にネットリスト XML ファイル内に定義されています。このファイルは XML 形式であり、JMAG から生成されます。このファイルを指定するためには、編集部分の右のブラウズボタンをクリックしてください。

JMAG 入力ファイルはデバイスをモデル化した JMAG のデータファイルです。このファイルは.jcf 拡張 子を持っており、ネットリスト XML ファイル内に定義されています。 .jcf ファイルと.xml ファイルは同 じディレクトリに入っていなければなりません。

JMAG ケーステキストはユーザが JMAG 回路を識別するための「名前」として利用するテキストであり、 自由に設定することができます。

パラメータ	機能
dt of JMAG	JMAG 内の時間ステップ
lr	定格電流です。JMAG 内で使われています。
dl_threshold	電流基準値です。JMAG 内で使われています。
dr_threshold	移動の基準点です。JMAG 内で使われています。
MomentofInertia	装置の慣性モーメント
MechTimeConstant	装置の機械的時定数(sec)
Beck emf Flag	全ての FEM コイル電流の表示フラグ(1: 表示、0: 非表示)
Rotor Angle Flag	全軸角の表示フラグ
Speed Flag	全軸速度の表示フラグ
Torque Flag	全軸トルクの表示フラグ

特定の XML ファイルを選び、.jcf データファイルが読み込まれると、以下のパラメータがプロパティウィンドウ内に表示されます。

JMAG 側シミュレーションのセットアップ方法は JMAG のマニュアルとドキュメントを参照してください。

4.7.2 MagCoupler ブロック (MagCoupler Block)

シンボル

Block with 4 inputs and 4 outputs

仕様

パラメータ	機能
リンクテーブルファイル	PSIM と JMAG との接続を定義する XML ファイル(.xml の拡張 子)です。
JMAG 入力ファイル	JMAG 用の JCF 入力ファイル(.jcf 拡張子)です。.xml ファイル と.jcf ファイルは同じディレクトリ上にある必要があります。
JMAG ケーステキスト	JMAG 回路用のコメント
入力ノード	PSIM から JMAG に値を渡すノード
出力ノード	JMAG から PSIM に値を渡すノード

使う回路の入出力ノード数によってシンボルの入出力ノード数も変化します。

MagCoupler ブロックは、電圧、電流と位置を入力とし、電圧、電流、位置、トルクと力を出力します。PSIM では、MagCoupler ブロックはパワー回路素子として扱われます。

MagCoupler と他の回路との連結はいずれの入力と出力においても電圧信号です(入力ノードに流れ込む 電流は存在しません)。このとき、回路中からの電流を電圧信号へ変換(あるいはその逆の変換)をするに は、「電流制御電圧源」あるいは「電圧制御電流源」を使うことで実現できます。

リンクテーブルファイルは入出力のインターフェースとJMAG に関連する関数を定義します。このファ イルはJMAG によって自動的に生成されます。編集フィールドの右側にあるブラウズボタンをクリックし てこのファイルを設置してください。

JMAG入力ファイルはJMAG のソルバに読み込まれるJCF 入力データファイルです。ファイル名はリン クテーブルファイルで定義されます。

JMAG入力ファイルは必ずリンクテーブルファイルと同じディレクトリにあることにご注意ください。 何らかの素子データベースをJMAG で使用している場合、それらのファイルも.xml ファイルと同じディレ クトリに置く必要があります。一方、.xml ファイルは必ずしも回路図ファイルと同じディレクトリに入れ る必要はありません。ただし、同じファイル名の.xml ファイルが回路図ディレクトリに存在する場合、 PSIM は優先的に回路図ディレクトリにあるファイルを読み込みます。

JMAGケーステキストはユーザがJMAG回路を識別するための「名前」として利用するテキストであり、自由に設定することができます。

入力ノードはPSIM からJMAG に値を渡すノードです。MagCoupler ブロックの図では、入力端子の順番は入力ノードの設定と同じ順序で左上から左下に並びます。この順番はノードをハイライト化し、上あるいは下矢印をクリックすることで変えることができます。

出力ノードはJMAG がPSIM に値を返すためのノードです。MagCoupler ブロック図において、出力端 子の順番は出力ノードの設定と同じ順序で右上から右下に並びます。この順番はノードをハイライト化 し、上あるいは下矢印をクリックすることで変えることができます。 Edit Image ボタンをクリックしますと、MagCoupler ブロック図を編集したり、カスタマイズしたりす ることができます。Display File ボタンを押すと、Microsoft Internet Explorer環境にあるリンクテーブルフ ァイルが表示され、Read File ボタンを押すとリンクテーブルファイルが読み込まれます。

JMAG、PSIM のセットアップ

MagCoupler ブロックを使った連成シミュレーションに向けたJMAG とPSIM間のリンクのセットアップ には、大きく二つのステップがあります。まずJMAG 上で回路をセットアップしてリンクテーブルファイ ルを生成し、そのリンクテーブルファイルをPSIM に読み込む設定をします。

インダクタを例にこの手順について説明します。

この例のPSIM 回路において、左側の回路はPSIM素子 ライブラリに備えつきのインダクタを使いま す。そして、右側の回路はJMAG で計算されるインダクタを使います。この例では、インダクタはPSIM における制御電流源としてモデル化されます。インダクタの端子電圧はまず電圧制御電圧源を通じてGND を基準とした電圧に変換され、その値はMagCoupler ブロックの入力ノードVL に渡されます。PSIMのシ ミュレーションタイムステップごとに、入力電圧に基づいてインダクタ電流を計算するJMAG の関数が呼 び出されます。JMAG で計算された電流値はPSIM に電圧の形で返され、電圧制御電流源によってインダ クタの出力電流になります。

この例のJMAG 側の回路は、Voltage Function(左側)がPSIM から渡された電圧を受け取り、FEM コイルと直列に繋がっている電流プローブを通過します。電流プローブは解析された電流値を観測し、観測した値がPSIM に返されます。JMAG 環境におけるインダクタの構造は右下に示されています。

PSIM でMagCoupler ブロックを通じて、JMAG を呼び出す手順は以下の通りです。 【JMAG 側の操作手順】

> -JMAG 回路で、FEM Coil(FEM コイル)の右側にVoltage Function(電源電圧)を接続してくだ さい。プロパティウィンドウのElectrical Potential(電位)に属するConstantValue(一定値)を 選択し、Constant Value[V](一定値[V])を0にセットしてください。

-FEMコイルの左側にCurrent Probe(電流プローブ)を接続します。

-Current Probe(電流プローブ)の左側にもう一つのVoltage Function(電源電圧)を接続します (回路は上図に示す形になります)。Voltage Function(電源電圧)のプロパティウィンドウで Cooperates with an external circuit simulator(外部シミュレータと連成する)を選択します。

-インダクタの構造ウィンドウをハイライト化し、Conditions → Create Conditions(条件→ 条件作成)に移動します。表示されるリストからCoupled External Circuit Simulator(外部回 路シミュレータ連成)を選択してOK を押してください。

-Coupled External Circuit Simulator(外部回路シミュレータ連成)ダイアログウィンドウ上に 二つのリストが存在します。右側にあるJMAG というリストにPSIM と連動するために使 用できるすべてのファンクションが含まれています。一方、左側にあるExternal Circuit Simulator(外部回路シミュレータ)というリストにPSIM と連動するために選択されている ファンクションが含まれています。このケースでは、JMAG リストに二つのアイテムがあ り、Voltage Function と電流プローブです。

-Voltage Function をハイライト化し、「←」ボタンをクリックし、右側にあるリストから 左側にあるリストにアイテムを以降します。電流プローブに対しても同じ手順で行いま す。すると、これらの二つのアイテムは左側のリストに現れます。

-Voltage Function をハイライト化し、端末名をVL に変更します。また、電流プローブの端 子名をiL に変更します。ダイアログウィンドウを閉じます。

-File → Export(ファイル->書き出し)に移動し、JCF...を選択します。JCF ファイル名を "inductor" と設定すると、JCF ファイル"inductor.jcf"とリンクテーブルファイル "inductor_csl.xml"が生成されます。

- 最後にファイル管理の簡略化のために以下の手順を行うことをお勧めします。PSIM 回路 図ファイル"inductor_jmag.sch"が含まれるフォルダに、JCF ファイル "inductor.jcf"とリン クテーブルファイル"inductor_csl.xml"をコピーし、リンクテーブルファイルを "inductor_jmag.xml"にファイル名を変更します。

【PSIM 側の操作手順】

-すべての電力回路を作った後、Element → Power→ MagCoupler Module に移動し、 MagCoupler Block を選択してください。そのブロックを回路図に置いてください。

-MagCoupler ブロックをダブルクリックして、プロパティウィンドウを呼び出します。リ ンクテーブルファイルエディットフィールドの次にあるブラウザボタンをクリックしファ イルを選びます。ここでは"inductor_jmag.xml"を選択します。このファイルが読み込まれ た後、プロパティウィンドウはIN ノードVL とOUT ノードiL を表示します。

-MagCoupler ブロックを回路図内の残りの回路に接続します。 これでセットアップは完了です。

4.8 MagCoupler-RT モジュール

MagCoupler-RT モジュールは PSIM と JMAG-RT データファイルとのインターフェースを提供します。 JMAG-RT は電磁デバイスをモデル化するためのシミュレータです。JMAG-RT データファイルはあらかじ め JMAG 単体でシミュレーションを実行して作成します。 PSIM は JMAG-RT から出力されたデータを使 用するため、PSIM でシミュレーションする際に、JMAG を起動させる必要はありません。

JMAG-RT の最大の利点は、PSIM シミュレーションの実行時に JMAG を実行しないため、PSIM シミ ュレーションの速度が影響を受けることなく高速シミュレーションが可能になる点です。しかも、JMAG-RT データファイルが JMAG の動的シミュレーションから得られるので、モデルの正確さも MagCoupler を使用した場合と近いレベルになります。

MagCoupler-RT モジュールは、上記の機能のほか、4.9 章に記述されるような機械部と速度/トルク/ポジションセンサを含んでいます。

以下の 4 つの MagCoupler-RT ブロックが用意されています。

- 三相永久磁石型同期モータ (PMSM) - 2 相ステッピングモータ -リニア同期モータ -リニアソレノイド

各ブロックのシンボルは以下の通りです。

シンボル

L	L+¥
10	「「「「「」」
-	

パラメータ	機能
ネットリストXMLファ	PSIM と JMAG-RT とのインターフェースを定義する XML ファイル(.xml 拡
イル	張子)
JMAG-RT入力ファイル	JMAG-RT データファイル(.rtt 拡張子) .xml ファイルと.rtt ファイルは同じデ ィレクトリ内におく必要があります
JMAGケーステキスト	ユーザが自由にコメントを記述できます
端子名	ブロックのノード名称

MagCoupler-RT モジュールでは、電気ノード(A、B、C、A+、A-、B+、B-、C+、C-、D+、D-)はブロックの上部に配置されます。ローターシャフトノード(M+, M-)はブロックの左右に配置されます。

電気ノード、ローターシャフトノード、および PSIM と JMAG-RT データファイルとのインターフェー スはネットリスト XML ファイルで定義されています。このファイルは XML 形式で、JMAG-RT マネージャ によって生成されます。このファイルを指定するにはモジュールを右クリックし、パラメータ設定ウィン ドウにて".xml"ファイルを参照してください。

このファイル内の"NetlistElement"には、使用する MagCoupler-RT ブロックのタイプごとに決められた 名称を設定して下さい。それぞれのブロックの名称は以下の通りです。

- 三相 PMSM	"PM Synchronous Machine"
- 2 相ステッピングモータ	"Step Machine"
-リニア同期モータ	"Linear Synchronous Machine"
-リニアソレノイド	"Linear Solenoid"

例として、PMSM のネットリスト XML ファイルの最初の数行は、以下のように記述します。

<?xml version="1.0" encoding="UTF-8" ?>

<CircuitElement file="imp.rtt" name="MagCoupler-RT">

<NetlistElement type="JMAGRT" element="PM Synchronous Machine" pole_number="4">

JMAG-RT 入力ファイルは JMAG 上でシミュレーションし作成した JMAG-RT データファイルです。このファイルは、".rtt"拡張子を持ちます。".rtt"ファイルおよび".xml"ファイルは同じディレクトリにおく必要があります。

JMAG ケーステキストはユーザが自由にコメントを記述することが可能です。

端子名はインタフェースノードの名前となります。 ブロック上部の電気ノード(A、B、C)は主回路と接続され、ブロックの左右のローターシャフトノード(M+, M-)は機械系と接続されます。

パラメータ	機能
shaft1_MomentofInitia	モータの慣性モーメント(kg* m²)
shaft1_MechTimeConstant	機械的時定数(sec)
RU_resistance	U 相の抵抗値(Ω)
RV_resistance	V 相の抵抗値(Ω)
RW_resistance	W 相の抵抗値(Ω)
OffsetAngle	初期回転角(°)
coef_inductance	インダクタンス係数(JMAG-RT で使用)
coef_flux	磁束係数(JMAG-RT で使用)
coef_torque	トルク係数(JMAG-RT で使用)
coef_magnet	磁気係数(JMAG-RT で使用)
coef_material	物質係数(JMAG-RT で使用)
turns_coil1	コイル1の巻き数(JMAG-RT で使用)
turns_coil2	コイル 2 の巻き数(JMAG-RT で使用)
Current Flag	三相 FEM コイル電流の表示フラグ(1:表示、0:非表示)
Back emf Flag	三相 FEM コイルの逆起電力の表示フラグ
Rotor Angle Flag	回転角(°)の表示フラグ
Speed Flag	シャフトの機械的速度(rad/sec)の表示フラグ
Torque Flag	発生したトルク(N*m)の表示フラグ
shaft1 Master Flag	モータのマスタ/スレーブフラグ(1:マスタ、0:スレーブ)

三相 PMSM のパラメータは以下の通りです。

2相ステッピングモータのパラメータは以下の通りです。

パラメータ	機能
RA+	A+相の抵抗値(Ω)
RA-	A-相の抵抗値(Ω)
RB+	B+相の抵抗値(Ω)
RB-	B-相の抵抗値(Ω)
MomentofInertia	モータの慣性モーメント(kg* m²)
MechTimeConstant	機械的時定数(sec)
OffsetAngle	初期回転角(°)
turns_coil2	コイル 2 の巻き数(JMAG-RT で使用)
coef_Inertia1	慣性モーメント1の係数
coef_Inertia2	慣性モーメント2の係数
Current Flag	三相 FEM コイル電流の表示フラグ(1:表示、0:非表示)
Back emf Flag	三相 FEM コイルの逆起電力の表示フラグ
Rotor Angle Flag	回転角(°)の表示フラグ
Speed Flag	シャフトの機械的速度(rad/sec)の表示フラグ
Torque Flag	発生したトルク(N*m)の表示フラグ
shaft1 Master Flag	モータのマスタ/スレーブフラグ(1:マスタ、0:スレーブ)

リニアソレノイドのパラメータは以下の通りです。

パラメータ	機能
RA	ソレノイドの抵抗値(Ω)
Mass	ソレノイドの質量(kg)
MechTimeConstant	ソレノイドの機械的時定数(sec)
SpringConstant	ソレノイドのバネ定数(JMAG-RT で使用)
DispLimitMax	ソレノイドの変位の上限値(m)
DispLimitMin	ソレノイドの変位の下限値(m)
OffsetDisp	初期値の変位(m)
turns_coil2	コイル 2 の巻き数(JMAG-RT で使用)
coef_mass1	質量1係数(JMAG-RT で使用)
coef_mass2	質量 2 係数(JMAG-RT で使用)
Current Flag	三相 FEM コイル電流の表示フラグ(1:表示、0:非表示)
Back emf Flag	三相 FEM コイルの逆起電力の表示フラグ
Position Flag	ソレノイドの位置(m)の表示フラグ
Velocity Flag	ソレノイドの速度(m/sec)の表示フラグ
Force Flag	発生する力の表示フラグ(N)
shaft1 Master Flag	ソレノイドのマスタ/スレーブフラグ(1:マスタ、0:スレーブ)

リニア同期モータのパラメータは以下の通りです。

パラメータ	機能
RU	U 相の抵抗値(Ω)
RV	V 相の抵抗値(Ω)
RW	W 相の抵抗値(Ω)
Mass	モータの質量(kg)
MechTimeConstant	機械的時定数(sec)
OffsetDisp	初期値の変位(m)
coef_inductance	インダクタンス係数(JMAG-RT で使用)
coef_flux	磁束係数(JMAG-RT で使用)
coef_force	トルク係数(JMAG-RT で使用)
coef_magnet	磁気係数(JMAG-RT で使用)
coef_material	物質係数(JMAG-RT で使用)
turns_coil1	コイル1の巻き数(JMAG-RT で使用)
turns_coil2	コイル2の巻き数(JMAG-RT で使用)
coef_mass1	質量 1 係数(JMAG-RT で使用)
coef_mass2	質量 2 係数(JMAG-RT で使用)
Current Flag	三相 FEM コイル電流の表示フラグ(1:表示、0:非表示)
Back emf Flag	三相 FEM コイルの逆起電力の表示フラグ
Position Flag	位置(m)の表示フラグ
Velocity Flag	速度(m/sec)の表示フラグ
Force Flag	発生する力の表示フラグ(N)
shaft1 Master Flag	モータのマスタ/スレーブフラグ(1:マスタ、0:スレーブ)

上記のうち、フラグを除くすべてのパラメータは XML ファイルで定義された.rtt ファイルから読み取る ことができます。表中のすべてのパラメータは PSIM 側で変更することができます。また、"JMAG-RT で 使用"と書かれたパラメータを PSIM 側で変更した場合、変更後の値は JMAG-RT に送られます。 MaqCoupler-RT のサンプル回路が"examples/MaqCoupler-RT"フォルダ内に用意されています。

4.9 機械素子及びセンサ (Mechanical Elements and Sensors)

この章では Motor Drive Module、MagCoupler Module、MagCoupler-RT Module に共通する素子につい て説明します。これらの素子には、機械負荷、ギアボックス、メカニカル・カップリング・ブロック、機械 系ー電気系インターフェースブロック、および様々な速度/トルク/ポジションセンサが含まれます。

4.9.1 機械負荷 (Mechanical Loads)

PSIMには機械負荷モデルが標準で備わっています。定トルク負荷、定電力負荷、定速度負荷、一般負荷、 及び外部コントロール負荷です。

4.9.1.1 定トルク負荷 (Constant-Torque Load)

定トルク負荷のシンボルは以下のようになります。 シンボル

パラメータ	機能
定トルク	トルク定数 T _{const} (N*m)
慣性モーメント	負荷の慣性モーメント(kg*m ²)

機械系の基準方向が、ドットの付いた端子に入る場合は、負荷は基準方向に沿っており、マスタモータに対する負荷トルクは Tconst です。そうでない場合、負荷トルクは-Tconst です。詳細な説明は 4.6.1 を参照 してください。

定トルク負荷は以下のように表されます。

$$T_L = T_{const}$$

この場合、負荷トルクは回転方向に依存しません。

4.9.1.2 定電力負荷 (Constant-Power Load)

定電力負荷のシンボルを以下に示します。 シンボル

上1家	
パラメータ	機能
最大トルク	負荷の最大トルク T _{max} (N*m)
基準速度	負荷の基本速度(n _{base})
慣性モーメント	負荷の慣性モーメント(kg*m²)

定電力負荷のトルク-速度曲線は以下のようになります。

機械速度が基準速度 Nbase 以下のとき、負荷トルクは

$$T_L = T_{\max}$$

機械速度が基準速度 nbase 以上のとき、負荷トルクは

$$T_L = \frac{P}{|\omega_m|}$$

ここで、 $P = T_{\max} * \omega_{base}$ および $\omega_{base} = 2\pi * n_{base} / 60$ です。 機械系の回転速度 ω_{m} は rad/sec で表されています。

4.9.1.3 定速度負荷 (Constant-Speed Load)

定速度負荷のシンボルは以下のようになります。 シンボル

仕様

パラメータ	機能
速度定数(rpm)	速度定数(rpm)
慣性モーメント	負荷の慣性モーメント(kg*m ²)

定速度負荷では機械系の回転速度を指定します。速度は速度定数に指定したとおりの一定速度になります。

4.9.1.4 一般負荷 (General-Type Load)

PSIMには、その他に一般負荷が備わっています。

シンボル

仕様

パラメータ	機能
Тс	定トルク項
kı(係数)	一次項係数
k₂(係数)	二次項係数
k₃(係数)	三次項係数
慣性モーメント	負荷の慣性モーメント(kg*m ²)

一般負荷は以下のように表されます。

$$T_{L} = sign(\omega_{m}) \cdot \left(T_{c} + k_{1} \cdot |\omega_{m}| + k_{2} \cdot \omega_{m}^{2} + k_{3} \cdot |\omega_{m}|^{3}\right)$$

ここで、ωmは機械系の回転速度 rad/sec です。

一般負荷のトルクは回転方向に依存します。

4.9.1.5 外部コントロール負荷 (Externally-Controlled Load)

外部コントロール負荷は、負荷量を制御ノードから任意に設定するために使用します。 シンボル

		°−~
		ł
仕礼	様	
	パラメータ	機能

	速度依存性のフラグ
速度フラグ	Flag =0 のとき、負荷は摩擦方向(回転を妨げる方向)に働きます。
	Flag =1 のとき、負荷は回転方向に依存しません。
慣性モーメント	負荷の慣性モーメント、kg*m ²

機械負荷の大きさは制御ノードの電圧値(1Vは1N*mに対応する)によって定義されます。このノードは 制御回路として取扱います。

4.9.2 ギアボックス (Gear Box)

ギアボックスのシンボルを以下に示します。 **シンボル**

o→ Shaft 2	Shaft 2
------------	---------

仕様

パラメータ	機能
ギア比	ギア比a
シャフト 1 マスタ/スレーブフラグ	シャフト1のマスタ/スレーブフラグ
シャフト2 マスタ/スレーブフラグ	シャフト2のマスタ/スレーブフラグ

より大きいドット付きシャフトがシャフト1です。

1 段目と 2 段目のギアの歯数をそれぞれ n1 および n2 とすると、ギア比は a = n1 / n2 となります。 ここで、2 つのギアの半径、トルク、回転速度をそれぞれ r1, r2, T1, T2, ω1, ω2 とすると、次の関係が成り 立ちます。

 $T_1 / T_2 = r_1 / r_2 = \omega_2 / \omega_1 = a$

二つのシャフトのうちいずれかをマスタモード、他方をスレーブモードとして設定できます。 Master/Slave Flag 設定の詳細については、「4.6.1 機械システムでの「基準方向」(Reference Direction)」 を参照下さい。

4.9.3 メカニカルカップリングブロック(Mechanical Coupling Block)

2つの機械システムをつなぐためにメカニカルカップリングブロックが使用されます。 シンボル

Mechanical System #1 • Mechanical System #2

このブロックは両方の機械システムがマスタモードのデバイスを持っている状況で使用されます。機械 システムを形成するためにはそれらを一緒に接続する必要がありますが、PSIMの機械システムでは1台 のマスタモードのデバイスしか持つことができません。この場合中間にメカニカルカップリングブロック を追加することで解決できます。

4.9.4 機械系-電気系インターフェースブロック (Mechanical-Electrical Interface Block)

このブロックを使うことにより機械系の内部等価回路にアクセスできます。

シンボル	/				
		Mechanical Side	~_M E →	Electrical Side	
仕様					
	パラメータ			楼 能	

	成肥
マスタ/スレーブフラグ	マスタ/スレーブモードのフラグ(1:マスタ,0:スレーブ)

モータと同じように機械系ー電気系インターフェースブロックはマスタ/スレーブモードのフラグにより基準方向を指定することができます。インターフェースブロックをマスタに設定すると、基準方向は機 械軸に沿って機械系の端子から残りの機械系の素子に向かっての方向になります。ひとつの機械系の中で はインターフェースブロックはひとつだけマスタに設定できます。マスタ/スレーブフラグの詳細について は「4.6.1 機械システムでの「基準方向」(Reference Direction)」を参照してください。

駆動系は1台のモータ(発生トルク Tem および慣性モーメント J1)と機械負荷(負荷トルク Tload と慣性モ ーメント J2)からなると仮定すると機械系の運動方程式は次のようになります。

$$(J_1 + J_2) \cdot \frac{d\omega_m}{dt} = T_{em} - T_{load}$$

ここで、ωmは機械軸の回転速度です。PSIMでは、この方程式は以下に示す等価回路でモデル化されています。

この回路では、2 つの電流源を Tem と Tioad の値に設定し、キャパシタで Ji と J2 を表現しています。また、ノード対地電圧(速度ノード電圧)は機械系の回転速度 ω_m に対応します。これは $C = J_1 + J_2, V = \omega_m, i = T_{em} - T_{load}$ とすればキャパシタの方程式 C*dV/dt = i に等価です。

PSIM では、モータと機械負荷を表す等価回路はキャパシタに基づく回路モデルを使っています。機械系 ー電気系インターフェースブロックを使えば、この機械系の等価回路の内部にアクセスすることができま す。機械系ー電気系インターフェースブロックの機械系側(MECH の表示)が機械軸に接続されると、電気 系側(ELEC の表示)は機械系等価回路の速度ノードに対応します。そこでどのような電気回路もこの端子に 接続することができます。このブロックを使えば、PSIM 内蔵モータや機械負荷をユーザが作成した負荷や モータにつなぐことができます。

例:カスタム負荷モデルと誘導機

以下の図にユーザが定義した機械負荷を機械系 - 電気系インターフェースブロックで誘導機モデルに接続した例を示します。すでに示したように、電気系側の端子電圧は機械軸の回転速度を示します。また、 この端子に接続したキャパシタは慣性モーメントを示します。

例:カスタムモータモデルと定トルク機械負荷

上の例とは逆に、ユーザが作成したカスタムモータモデルを PSIM ライブラリの機械負荷につなげるこ とができます。下の図にその例を示します。カスタムモータは上記キャパシタの等価回路の考え方を使っ て、機械系の運動方程式をモデル化しています。機械系の回転速度を表すノードは機械系ー電気系インタ ーフェースブロックの電気系側に接続します。

4.9.5 速度・トルクセンサ (Speed/Torque Sensors)

機械系の速度とトルクを測定するために、速度センサとトルクセンサが用意されています。 シンボル

イリメータ (被 能) ゲイン センサのゲイン

機械系の基準方向がドットの側からセンサに入っていく方向であるとすると、センサは基準方向に沿っていると言えます。基準方向の詳細は「4.6.1 機械システムでの「基準方向」(Reference Direction)」を参照してください。なお、速度センサの出力は rpm です。

以下の図で速度センサ1は基準方向に沿っており、速度センサ2は基準方向の逆向きに付いています。 モータが正方向に回転している場合、速度センサ1の出力は正の値(positive)を読み出し、速度センサ2の 出力は負の値(negative)を読み出します。

トルクセンサはセンサのドットが付いた端子とドットが付いていない端子との間のトルク差を計測しま す。この機能を、下図を使って説明します。 左側の図は 10(N*m)の負荷が付いたトルクセンサで、機械系の基準方向は左から右へ向かう方向です。 右図は実際のシステムに置き換えた場合を示しています。

このケースでは、正方向の回転とトルクは時計回りの方向になります。センサのドットの付いた方向は 左側にあり、負荷はシャフトを減速させる働きをします(負荷トルクは反時計回りの方向になります)。

トルクセンサは、センサのドット側が接続されていない場合ドットの付いていない側のトルクテンションを計測し、センサ出力が正の値であればトルクが速度の基準方向と反対であることを意味します。したがって、下図の例では、正方向の回転は時計回りであり、負荷トルクは反時計回りになります。またトルク値は 10(N*m)となります。

同様に、ドット側が接続されているとき、センサはドット側のトルク強度を計測し、回転速度方向は正 方向となります。例として、以下の図のように左右が反転しているトルクセンサを考えます。ドット側が 接続されているとき、負荷トルクはセンサのドット側に回転速度方向と逆向きにかかります。トルクセン サ出力は-10(N*m)になります。

トルクセンサが機械系の等価回路でどのようにモデリングされるかを、以下の図を使って説明します。

この機械系は1つのモータ、2つのトルクセンサ、2つの負荷からなります。モータと負荷のトルク(T) と慣性モーメント(J)は図に示すとおりです。基準方向はこの場合、左から右です。この系の運動方程式は 次のようになります。

$$(J + J_{L1} + J_{L2}) \cdot \frac{d\omega_m}{dt} = T_{em} - T_{L1} - T_{L2}$$

この運動方程式を等価回路で表すと次のようになります。

等価回路のノード電圧が機械系の速度 ωm に対応します。左側の電流プローブがトルクセンサ 1(Sensor 1)の出力に相当します。同様に、右側の電流プローブはトルクセンサ 2(Sensor 2)の計測値を示します。右 側の電流プローブは極性が反転していることに注意してください(右から左)。これはトルクセンサ 2 が機 械系の基準方向と反対の方向を計測しているからです。

等価回路により機械出力が伝わる様子もわかります。電圧と電流の積を取ることにより、トルクと回転 速度の積をとったことと同等になり、これは機械出力に相当します。出力が正ならば、回転速度と同じ方 向に伝わります。

4.9.6 位置センサ (Position Sensors)

位置センサとして、アブソリュートエンコーダ、インクリメンタルエンコーダ、レゾルバとホールセン サの4種類が提供されています。これらのセンサは速度センサ、トルクセンサと同様に、機械的なシャフ トに接続されていて、その出力は電圧信号(電圧プローブを接続すると波形表示できます)であり、また制御 信号になります。

4.9.6.1 アブソリュートエンコーダ (Absolute Encoder)

アブソリュートエンコーダは 360°(機械角)の範囲におけるシャフトの位置を出力する位置センサです。 シンボル

パラメータ	機能
初期値(°)	シャフト位置の初期値 (deg.)
ビット数	分解能のビット数 N

エンコーダの出力の分解能はビット数Nによって決定されます。エンコーダからはカウント数(範囲は 0から 2^N-1)と、位置としての機械角(範囲は0から 360°)が出力されます。

アブソリュートエンコーダを使った例として永久磁石同期機ドライブシステムのサンプルファイル "Absolute Encoder PMSM Drive.sch"に示しています。

4.9.6.2 インクリメンタルエンコーダ (Incremental Encoder)

インクリメンタルエンコーダは速度、位相角とシャフトの方向を示すパルス信号を出力します。 **シンボル**

仜悚

パラメータ	機能
初期値([°])	シャフト位置の初期値 (deg.)
ライン数	1回転あたりのパルス数

出力信号 A, B はパルス出力であり、A が B に対して 90°位相が進んでいます。また、Z は基準位置信号 であり、通常は 0 が出力され、シャフト角度が 0 になったときに 1 が出力されます。 A, B, Z はそれぞ れ A, B, Z を反転した信号です。

インクリメンタルエンコーダを使った例として誘導機ドライブシステムのサンプルファイルを "Incremental Encoder INDM Drive.sch"に示しています。

4.9.6.3 レゾルバ (Resolver)

レゾルバは主に一つの回転子巻線と二つの固定子巻線を持つ回転式変圧器です。二つの固定子巻線は COS 巻線と SIN 巻線と呼ばれ、互いに 90°離れています。

シャフトが回転すると、COS 巻線と SIN 巻線の出力電圧はシャフトの角度に対して cos と sin の関数として変化します。

シンボル

仕様

パラメータ	機能
初期値(゜)	シャフト位置の初期値 (deg.)
極数	レゾルバの極数

レゾルバは4つの出力、それぞれが cos+、 cos-(cos+の反転)、sin+、sin-(sin+の反転)を持っていま す。すべての出力のピーク値は1です。

レゾルバを使った PMSM ドライブシステムの例を、サンプルファイル"Resolver PMSM Drive.sch"に示しています。

4.9.6.4 ホールセンサ (Hall Effect Sensor)

ホールセンサはシャフトの位置に依存する三つのパルス信号を出力する位置センサです。このセンサは ーセットの半導体スイッチとトリガ磁石によって構成されています。磁場の強さが閾値より高い時、或い は低い時に半導体スイッチは開放或いは導通の状態に変わります。 シンボル

パラメータ	機能
初期値([°])	シャフト位置の初期値 (deg.)
極数	センサの極数

ホールセンサは三つのロジック信号 A,B と C を出力します。それぞれの信号は電気角的に 120°離れています。

ホールセンサはブラシレス直流機に内蔵されているホールセンサと同等です(一般的なホールセンサ IC の出力と異なり、出力を直接ブラシレス直流機の駆動に使用できるようになっています)。

ホールセンサを使ったブラシレス直流機ドライブシステムの例として、サンプルファイル"Hall-Effect Sensor BDCM_Drive.sch"を提供しています。

4.10 熱モジュール (Thermal Module)

熱モジュールはPSIMソフトウェアのアドオン・モジュールです。半導体デバイス(ダイオード、IGBTおよびMOSFET)の損失を計算することができます。

損失は電流として出力されます。温度上昇値を知るためには熱抵抗(℃/W)の値を抵抗素子で模擬しま す。抵抗の電圧降下が温度上昇値になります。

熱モジュールのコアはデバイスデータベースです。PcdEditor.exeというデバイスデータベースエディタ を利用して、データベースへ新しいデバイスを加えることができます。データベースを容易に管理するこ とも可能です。 デバイスのデータベースは損失計算のためにシミュレーションで使用されます。

データベースのデバイスをシミュレーションで使用する方法と、損失を計算する方法を以下に示しま す。

- デバイスのビヘイビアモデルをシミュレーションで使用します。ビヘイビアモデルは、動特性 (ターンオンおよびターンオフの過渡現象)ではなく、デバイスの静特性(順方向電圧降下またはオン抵抗など)を考慮に入れます。
- 計算された電圧と電流に基づいて、PSIMはデバイスデータベースにアクセスし、導通損失あるいはスイッチング損失を計算します。デバイスの静特性は次のシミュレーションのために更新されます。

Thermal Moduleのスイッチング損失計算ではスイッチング前後の瞬時の電圧電流値が使用されていま す。ハードスイッチングでのデバイス動作に対してはスナバ回路があると電圧電流波形が変わり測定値が 変わるため計算結果にも影響し正しくない結果となります。Thermal Moduleの損失計算を使用する場合 はスナバ回路を一旦無効にすることをお勧めします。回路上の素子(スナバ回路など)を一時的に無効化し たい場合は、素子上にカーソルを合わせて、右クリックで表示されるメニューから無効を選択すると、無 効状態(接続されていない)になります(有効に設定し直す事で元に戻ります)。

インダクタの損失計算は材質の特性を考慮しています(例えばコアの材質、形状、巻線タイプ、サイズ、エアギャップ等)

本損失計算は近似値であり、結果の精度は、デバイスデータの精度、ならびに実際の回路動作条件にデ バイスのテスト条件からの結果の適切なスケーリングに依存することに留意してください。ユーザは、シ ミュレーションによる損失計算結果とハードウェアから測定した結果を検証する必要があります。

- 4.10.1 ダイオードサーマルモデル (Diode Thermal Model)
 - 4.10.1.1 データベースのダイオードデバイス (Diode Device in Database)

データベースには以下のダイオードデバイスの情報が定義されています。

一般情報

Manufacturer Part Number デバイスメーカー メーカの部品番号 ディスクリートパッケージ、デュアルパッケージ、三相ブリッジパッケージ

図では、ダイオードのアノードとカソード端子以外に、2つの余分な端子があります。ドットがある端子 はダイオード導通損失Pcondのためであり、ドットのない端子はダイオードスイッチング損失Pswのためのも のです。複数パックのパッケージでは、それぞれの合計損失が出力されます。

絶対最大定格

Vrrm,max (V)	ピーク逆方向阻止電圧
I _{F,max} (A)	最大直流電流
T _{j,max} (°C)	最大接合部温度
電気的特性	
V _d vs. I _F	順方向導通電圧降下Vd vs. 順方向電流IF
trr vs. I⊦	逆方向回復時間t _{rr} vs. 電流IF
lrr ∨S. IF	ピーク逆方向回復電流 <i>l</i> " vs. 電流 <i>l</i> -
Q _{rr} vs. I _F	逆方向回復電荷量Q _{//} vs. 電流 <i>l_F</i>
Err vs. IF	逆方向回復電力損失 <i>Err</i> vs. 電流 <i>l</i> -
熱的特性	
Rth(j-c)	接合・ケース間熱抵抗、℃/W
R _{th(c-s)}	ケース・シンク間熱抵抗、℃/W
寸法と質量	
Length (mm)	デバイスの長さ、mm
Height (mm)	デバイスの高さ、mm
Weight (g)	デバイスの質量、g
Err対vs. IF特性の「Reverse blocking voltage VR (V)」定数が損失の計算に利用されるので、正しい値を 入れてください。

絶対最大定格、熱的特性、寸法と質量の情報は損失計算には使用されません。

損失 Pcond、Pswの単位はワットで、これらの端子から流れる電流の形で表されます。 したがって、損失を測定して表示するためには電流計を Pcond または Psw ノードと GND の間に接続する必要があります。使用しないときは、これらの端子はフローティングにせず、GND に接続してください。

4.10.1.2 ダイオード損失計算 (Diode Loss Calculation)

損失計算はシミュレーションでデータベースのダイオードデバイスを選択して使用することができま す。熱モジュールのライブラリのダイオードデバイスには次のパラメータがあります。

仕様

パラメータ	機能
Device	デバイスデータベースから選択された特定デバイス
周波数	損失が計算される周波数(Hz)
Pcond校正係数	トランジスタ伝導損失P _{cond} の補正係数K _{cond}
Psw 校正係数	トランジスタ・スイッチング損失Pswの補正係数Ksw
並列デバイス数	並列に接続された同一のダイオードの個数

パラメータ周波数は損失が計算される周波数です。

例えば、デバイスが 10kHz のスイッチング周波数で作動して、パラメータ*周波数*が 10kHz に設定される と、損失はスイッチング周期の値になります。

しかしながら、パラメータ周波数が 60Hz に設定されると、損失は 60Hz 周期の値になります。 パラメータPcond校正係数はトランジスタ伝導損失のための修正率です。修正の前に計算された導通損 失はPcond_calより、

$$P_{cond} = K_{cond} * P_{cond \ cal}$$

同様に、パラメータPsw校正係数はトランジスタ・スイッチング損失のための修正率です。修正の前に 計算されたスイッチング損失がPsw_calなら、

 $P_{sw} = K_{sw} * P_{sw_cal}$

複数の同一な動作をするダイオードが並列に接続される場合、回路図上にダイオードブロックを1つだけ設置し、パラメータにデバイスの個数を設定してください。同一のデバイスブロックが回路内で複数個 並列接続されている場合、シミュレーション中で僅かな差が発生し、それが原因となりデバイスの電流が 正確に一致しない可能性があります。

*並列デバイス数*が1より大きい値に設定されている場合、並列接続されているデバイスを流れる電流は、 各デバイスに均等に分割されて流れるようになります。よって合計損失は各デバイスの損失を*並列デバイ ス数*の値で乗算して算出されます。出力端子 P_{cond}、P_{sw} から流れる電流は、並列接続されている全てのデ バイスの合計損失になります。

導通損失端子 Pcond またはスイッチング損失端子 Pswの電圧は、算出されたダイオードの接合温度 Tjを表 し、データベースの曲線から損失を算出する際に使用されます。算出された Tjが 2 つの曲線の接合温度の 間にある場合、値の補間をします。算出された Tjが曲線の最低接合温度よりも低い場合や、曲線の最高接 合温度よりも高い場合、曲線は最低または最高接合温度に対応する物が使用されます。曲線が一つだけの 場合は、その曲線は算出された Tjに関係なく使用されます。

導通損失

ダイオード導通損失は次のように計算されます。 導通損失=V_d * I_F ここで、Vaはダイオード電圧降下、及び IFはダイオード順電流です。ダイオードがデューティサイクル D で周期的に導通する場合には、同損失は以下の通り計算されます。

導通損失=V_d * I_F * D

<u>スイッチング損失</u>

スイッチング損失を計算する際に、ダイオードのターンオン損失は無視され、考慮されません。逆回復 によるダイオードターンオフ損失は次のように計算されます。

$$P_{sw off} = E_{rr} * f * V_R / V_R$$
 datasheet

または

 $P_{sw off} = 1/4 * Q_{rr} * V_{R} * f$

ここで、Errは逆方向回復エネルギー損失、Qrrは逆方向回復電荷量、Vrkは逆阻止電圧、そしてfは入カパラメータ周波数で定義された周波数です。逆方向回復電荷量Qrrlは以下のように定義されます。

 $Q_{rr} = 1/2 * t_{rr} * I_{rr}$

Err がデバイスデータベースに与えられているならば、それを基に損失の計算をします。もし *Err* が与えられていないが、Qrr がデバイスデータベースで与えられる場合、損失は Qrr に基づいて計算されます。しかし Qrr も与えられないとき、損失は *trr* と *Irr* に基づいて計算されます。それら両方とも与えられなければ、損失は 0 とみなされます。ただし、MOSFETの逆並列ダイオードの場合は Qrr が定数となってしまうので下記のように IF によりスケーリングされます。

$$P_{sw_off} = 1/4 * Q_{rr} * V_R * f * IF / IF_{datasheet}$$

Eon/Ic、Eoff/Icのグラフにおいて、Icの定義域外のIcにおけるEon,Eoffは直近の2点を延長して計算されます。計算は瞬時値が用いられます。

例:ダイオード損失計算

下記の回路は、Powerex のディスクリートダイオード CS240650(600V、50A)を使用するサンプル回路 を示します。導通損失及びスイッチング損失は 2 つの電流計によって測定されます。損失の情報を知るこ とができれば、熱等価回路を構築するによって、デバイス接合部温度を計算することができます。熱の過 渡現象を考慮しない熱回路を示します。

4.10.2 IGBT サーマルモデル(IGBT Thermal Model)

4.10.2.1 データベースの IGBT デバイス (IGBT Device in Database)

IGBT デバイスには、ディスクリート(discrete)、デュアル(dual)そして 6 パック(6-pack)の 3 種類のパッ ケージがあります。

デュアルパッケージでは、ハイサイド側およびローサイド側のスイッチの両方が IGBT(フルブリッジ)で ある場合、スイッチのうちの1つは IGBT であり、他はフリーホイーリングダイオード(ハーフ・ブリッジ) である場合があります。ハーフブリッジのデュアル IGBT デバイスでは、フリーホイーリングダイオード のパラメータが逆並列ダイオードのパラメータと異なる場合があるので、この種のデバイスは IGBT ダイ オードデバイスと呼ばれ、シミュレーションで異なったタイプとして扱われます。しかし、ここでは説明 をわかりやすくするため、両方のデバイスを IGBT デバイスとして扱います。

IGBT デバイスには、ディスクリート、デュアルパッケージ、または 6-パックの 3 タイプのパッケージが あります。

データベースに IGBT デバイスの以下の情報が定義されています。

一般情報

図では、IGBTとダイオード端子以外に、上部から下部まで4つの余分な端子があります(6パックのパッ ケージの場合、左側から右側)。それらは、トランジスタ導通損失Pcond Q(円のドットがある)の端子、トラ ンジスタ・スイッチング損失Psw_qのための端子、ダイオード伝導損失Pcond(正方形のドットがある)の端 子、ダイオードスイッチング損失Pswの端子です。

複数パックのパッケージでは、それぞれの合計損失が出力されます。

パッケージのスタイル(例、TO-247とTO-268、等)は、Styleフィールドによって指定します。 絶対最大定格 (Absolute Maximum Ratings) ※損失計算には使われません。

- 最大コレクタ・エミッタ電圧 V_{ce,max} (V)
- $I_{c,max}(A)$ 最大コレクタ電流
- T_{j,max} (°C) 最大接合温度

電気的特性 – トランジスタ (Electrical Characteristics – Transistor)

Vce(sat) vs. Ic コレクタ・エミッタ飽和電圧 Vce(sat) vs. コレクタ電流/c

- ターンオンエネルギー損失Eon vs. コレクタ電流Ic Eon vs. Ic
- ターンオフエネルギー損失Eoff vs. コレクタ電流lc Eoff vs. Ic

電気的特性-ダイオード(また逆並列ダイオード) (Electrical Characteristics – Diode, or Anti-Parallel Diode)

- Vd vs. IF 順伝導電圧降下vs. 順電流/F
- trr vs. IF 逆方向回復時間trr vs. 電流 IF
- I_m vs. I_F ピーク逆方向回復電流*I_m* vs. 電流*I_F*
- Qrr vs. IF 逆方向回復電荷Qrr vs. 電流IF
- Err vs. IF 逆方向回復電力損失Err vs. 電流IF

電気的特性-IGBT-Diodeデバイス用フリーホイールダイオード(Electrical Characteristics – Free-

Wheeling Diode for IGBT-Diode device only)

- Vd vs. IF
 順伝導電圧降下vs. 順電流IF

 trr vs. IF
 逆方向回復時間trr vs. 電流IF

 Irr vs. IF
 ピーク逆方向回復電流Irr vs. 電流IF

 Qrr vs. IF
 逆方向回復電荷Qrr vs. 電流IF
- Err vs. IF 逆方向回復電力損失Err vs. 電流IF

熱的特性 (Thermal Characteristics)※損失計算には使われません。

 R_{th(j-c)} (transistor)
 トランジスタ接合 - ケース間熱抵抗、℃/W

 R_{th(j-c)} (diode)
 ダイオード接合 - ケース間熱抵抗、℃/W

 R_{th(c-s)}
 ケース - シンク間熱抵抗、℃/W

寸法と質量 (Dimensions and Weight)※損失計算には使われません。

- Length (mm) デバイスの長さ、mm
- Width (mm) デバイスの幅、mm
- Height (mm) デバイスの高さ、mm

Weight (g) デバイスの質量、g

上記のトランジスタの Eon vs. lc および Eoff vs. lc で用いる DC バス電圧(V)、逆並列ダイオードまたはフ リーホイールダイオードの Err r vs. lF で用いる逆阻止電圧 VR (V)は損失計算のスケールに用いられるた め、適切な値が入力されなければなりません。

一方、絶対最大定格、熱的特性、寸法と質量は損失計算には使用されないため、入力はオプションとな ります。

また、トランジスタのコレクタ・エミッタ飽和電圧 Vce(sat) 、およびダイオードの順伝導電圧降下 Vdは、 電流依存して変動します。新たな値は後続するシミュレーションにて使用されます。

4.10.2.2 IGBT 損失計算 (IGBT Loss Calculation)

損失計算のシミュレーションにおいてデータベースの IGBT デバイスを選択して使用することができます。熱モジュールのライブラリの IGBT デバイスには次のパラメータがあります。

ш	_+¥
п	【尔

パラメータ	機能
Device	デバイスデータベースから選択された特定デバイス
周波数	損失が計算される周波数(Hz)
Pcond_Q 校正係数	トランジスタ伝導損失Pcond_Qの補正係数Kcond_Q
P _{sw_Q} 校正係数	トランジスタ・スイッチング損失P _{sw_Q} の補正係数K _{sw_Q}
Pcond_D 校正係数	ダイオード伝導損失Pcond_Dの補正係数Kcond_D
Psw_D 校正係数	ダイオードスイッチング損失Psw_Dの補正係数Ksw_D T
並列デバイス数	並列に接続され同一な動作をするIGBTデバイスの個数

パラメータ周波数は損失が計算される周波数です。例えば、デバイスが 10kHz のスイッチング周波数で 作動して、パラメータ周波数が 10kHz に設定されると、損失はスイッチング周期の値になります。しかし ながら、パラメータ周波数を 60Hz に設定すると、損失は 60Hz 周期の値になります。

パラメータP_{cond_Q} 校正係数はトランジスタ導通損失のための修正率です。例に関して、修正の前に計算された伝導損失はP_{cond_Q cal}より、

$$P_{cond_Q} = K_{cond_Q} * P_{cond_Q_cal}$$

同様に、パラメータP_{sw_Q}校正係数はトランジスタ・スイッチング損失のための修正率です。例に関して、修正の前に計算されたスイッチング損失はP_{sw_Q_ca}より、

$$P_{sw_Q} = K_{sw_Q} * P_{sw_Q_cal}$$

パラメータ P_{cond_D} 校正係数と P_{sw_D} 校正係数はトランジスタ損失と同様に働きますが、これらはダイオードの損失に関係します。

複数の同一な動作をするIGBTデバイスが並列に接続される場合、回路図上にIGBTブロックを1つだけ設置し、パラメータにデバイスの個数を設定してください。同一のデバイスブロックが回路内で複数個並列接続されている場合、シミュレーション中で僅かな差が発生し、それが原因となりデバイスの電流が正確に一致しない可能性があるからです。*並列デバイス数*が1より大きい値に設定されている場合、並列接続されているデバイスを流れる電流は、各デバイスに均等に分割されて流れるようになります。よって合計損失は各デバイスの損失を*並列デバイス数*の値で乗算して算出されます。出力端子Pcond_D、Psw_D、Pcond_a、Psw_aから流れる電流は、並列接続されている全てのデバイスの合計損失になります。

下図のように、導通損失端子 Pcond_Qまたはスイッチング損失端子 Psw_Qの電圧は、算出されたトランジ スタの接合温度 Tj_Qを表し、導通損失端子 Pcond_D またはスイッチング損失端子 Psw_Dの電圧は、算出され た逆並列ダイオードの接合温度 Tj D表します。

データベースの曲線から損失を算出する際に、算出された接合温度 T_{LQ} および T_{LD} は使用されます。算 出された接合温度が 2 つの曲線の接合温度の間にある場合、値の補間をします。算出された接合温度が曲 線の最低接合温度よりも低い場合や、曲線の最高接合温度よりも高い場合、曲線は最低または最高接合温 度に対応する物が使用されます。曲線が一つだけの場合は、その曲線は算出された接合部温度に関係なく 使用されます。

導通損失

トランジスタ伝導損失は次のように計算されます。 トランジスタ伝導損失=*V_{ce(sat)} * I_c* ここで、V_{ce(sat)}はトランジスタのコレクタ・エミッタ間飽和電圧、及び l_cはコレクタ電流です。トランジ スタがデューティサイクル D で周期的に導通する場合には、同損失は以下の通り計算されます。 トランジスタ伝導損失=V_{ce(sat)} * *l_c* * *D*

<u>スイッチング損失</u>

トランジスタターンオン損失は次のように計算されます。

トランジスタターンオン損失=Eon *f * Vcc / Vcc_datasheet

ここで、*Eon* はトランジスタターンオンエネルギー損失、*f* は入力パラメータ*周波数*で定義された周波数、 *Vcc* は実際の DC バス電圧です。*Vcc_datasheet* はデバイスデータシート内の Eon および Eoff の特性の Test Conditions にて「DC バス電圧(V)」として定義されているものです。

トランジスタターンオフ損失は次のように計算されます。

トランジスタターンオフ損失=Eoff * f * Vcc / Vcc_datasheet

ここで、*E*off はトランジスタターンオフエネルギー損失です。

逆並列ダイオードまたはフリーホイールダイオードの損失の計算方法は、ダイオードの解説で述べたも のと同じ方法です。

計算した損失、特にスイッチング損失の結果が近似値で表現されます。結果の正確さはデバイスデータ ベースのデータの正確さと実際の回路の動作条件に依存します。ハードウェアによる損失測定で、設計値 と実際の損失結果を確認することが必要です。計算には瞬時値が用いられます。

例:IGBT 損失計算

下記の回路は、Powerexの6パックIGBTモジュールCM100TU-12H(600V、100A)を使用するサンプル回路を示します。トランジスタとダイオードの導通損失及びスイッチング損失は、別々に加えられます。また、熱等価回路は温度上昇を計算するためのものです。熱モジュールを利用すると、様々な条件でデバイスの熱伝導能力を迅速に確認することができるので、異なる複数種類のデバイスを比較することができます。

4.10.3 IGBT-RB サーマルモデル(IGBT-RB Thermal Model)

4.10.3.1 データベースの IGBT-RB デバイス (IGBT-RB Device in Database)

データベースには MOSFET デバイスの以下の情報が定義されています。

一般情報

Manufacturer	デバイスメーカー		
Part Number	メーカの部品番号		
Package	ディスクリートパッケー	ジ、デュアルパッケージ	
	Discrete	Dual	
	$ \stackrel{\circ}{\longrightarrow} P_{cond}_Q $	$P_{cond Q}$	

図では、IGBTの端子以外に、2つノードがあります。それらは、トランジスタ伝導損失Pcond_Qの端子(円のドッドがある)、トランジスタ・スイッチング損失Psw Qの端子です。

```
複数パックのパッケージでは、それぞれの合計損失が出力されます。
```

パッケージスタイルはStyleフィールドにより定義されます。

絶対最大定格 (Absolute Maximum Ratings) ※損失計算には使われません。

V _{ce,max} (V)	最大コレクタ・エミッタ間電圧
I _{c,max} (A)	最大コレクタ電流
Timax (°C)	最大接合部温度

電気的特性 – トランジスタ (Electrical Characteristics – Transistor)

V_{ce(sat)} vs. lc コレクタ・エミッタ飽和電圧 V_{ce(sat)} vs. コレクタ電流*lc*

Eon vs. lc ターンオンエネルギー損失 Eon vs. コレクタ電流 lc

Eoff vs. lc ターンオフエネルギー損失 Eoff vs. コレクタ電流 lc

Err vs. lc 逆回復エネルギー損失Err vs. コレクタ電流/c

熱的特性 (Thermal Characteristics) ※損失計算には使われません。

Rth(j-c)	接合・ケース間熱抵抗、	°C/W
(ung-c)		0/1

Rth(c-s)	ケース・シンク間熱抵抗、	°C/W

寸法と質量 (Dimensions and Weight) ※損失計算には使われません。

デバイスの長、mm
デバイスの幅、mm
デバイスの高さ、mm
デバイスの質量、g
,

なお、トランジスタの Eon vs.lc と Eoff vs. lc で用いる DC バス電圧(V)、Err vs. lc で用いる逆阻止電圧 VR(V)は損失計算のスケールに用いられるため、適切な値を入力する必要があります。

また、絶対最大定格、熱特性、寸法と質量のパラメータは損失計算には使用されていません。コレクター エミッタ間飽和電圧 Vce(sat)はトランジスタの電流に応じて飽和します。

4.10.3.2 IGBT-RB 損失計算 (IGBT-RB Loss Calculation)

損失計算にシミュレーションでデータベースの IGBT-RB デバイスを選択して、使用することができま す。熱モジュールのライブラリの IGBT-RB には次のパラメータがあります。

ш	+*
П	「枝女」
	1414

パラメータ	機能
Device	デバイスデータベースから選択された特定デバイス
周波数	損失が計算される周波数(Hz)
P _{cond_Q} 校正係数	トランジスタ伝導損失P _{cond_Q} の較正係数K _{cond_Q}
Psw_q校正係数	トランジスタ・スイッチング損失Psw_qの較正係数Ksw_q
並列デバイス数	並列に接続された同一デバイスの個数

パラメータ周波数は損失が計算される周波数です。例えば、デバイスが 10kHz のスイッチング周波数で 作動して、パラメータ周波数が 10kHz に設定されると、損失はスイッチング周期の値になります。しかし ながら、パラメータ周波数を 60Hz に設定すると、損失は 60Hz 周期の値になります。

パラメータPcond_Q 校正係数はトランジスタの導通損失の修正係数です。例えば、修正前の算出された 導通損失をPcond_Q_calとすると、以下の式の様になります。

 $P_{cond O} = K_{cond O} * P_{cond O cal}$

同様に、パラメータP_{sw_Q}校正係数はトランジスタのスイッチング損失の修正係数です。例えば、修正前の算出されたスイッチング損失をP_{sw_Q cal}とすると、以下の式の様になります。

 $P_{sw_Q} = K_{sw_Q} * P_{sw_Q_cal}$

複数の同一な動作をする IGBT-RB デバイスが並列に接続される場合、回路図上に IGBT-RB ブロックを 1 つだけ設置し、パラメータにデバイスの個数を設定してください。同一なデバイスブロックが回路内で複 数個並列接続されている場合、シミュレーション中で僅かな差が発生し、それが原因となりデバイスの電 流が正確に一致しない可能性が有るからです。*並列デバイス数*が 1 より大きい値に設定されている場合、 並列接続されているデバイスを流れる電流は、各デバイスに均等に分割されて流れるようになります。よ って合計損失は各デバイスの損失を*並列デバイス数*の値で乗算して算出されます。出力端子 P_{cond_Q}、P_{sw_Q} から流れる電流は、並列接続されている全てのデバイスの合計損失になります。

導通損失端子 P_{cond_Q}またはスイッチング損失端子 P_{sw_Q}の電圧は、算出されたトランジスタの接合温度 T_{j_Q}を表します。データベースの曲線から損失を算出する際に使用されます。算出された接合温度が 2 つ の曲線の接合温度の間にある場合、値の補間をします。算出された接合温度が曲線の最低接合温度よりも 低い場合や、曲線の最高接合温度よりも高い場合、曲線は最低または最高接合温度に対応する物が使用さ れます。曲線が一つだけの場合は、その曲線は算出された接合部温度に関係なく使用されます。

<u>導通損失</u>

トランジスタ伝導損失は次のように計算されます。

$$P_{cond_Q} = V_{ce(sat)} * I_c$$

ここで、Vce(sat)はトランジスタのコレクターエミッタ間飽和電圧、Icはコレクタ電流です。

デューティサイクルDで定期的に計算している場合は次のように計算されます。

$$P_{cond O} = V_{ce(sat)} * I_c * D$$

<u>スイッチング損失</u>

トランジスタターンオン損失は次のように計算されます。

 $P_{sw \ O \ on} = E_{on} * f * V_{cc} / V_{cc}$ datasheet

ここで、*Eon* はトランジスタターンオンエネルギー損失、*f* は入力パラメータ*周波数*で定義された周波数、 *Vcc* は実際の DC バス電圧です。*Vcc_datasheet* はデバイスデータシート内の Eon および Eoff の特性の Test Conditions にて「DC バス電圧(V)」として定義されている物です。

トランジスタターンオフ損失は次のように計算されます。

$$P_{sw_Q_off} = (E_{off} + E_{rr}) * f * V_{cc} / V_{cc_datasheet}$$

ここで、Eoffはトランジスタターンオフエネルギー損失、Errは逆回復エネルギー損失です。

損失 Pcond_Q, Psw_Q,の単位はワットで、端子から出力される電流の形式で表わされます。よって、損失を 測定し表示するには、電流プローブを端子とグラウンドの間に設置してください。損失の値を使用しない 場合は、端子を浮いた状態にせず、グラウンドに接続しなければなりません。計算は瞬時値が用いられま す。

4.10.4 MOSFET サーマルモデル (MOSFET Thermal Model)

4.10.4.1 データベースの MOSFET デバイス (MOSFET Device in Database)

データベースには MOSFET デバイスの以下の情報が定義されています。

一般情報

図では、MOSFETとダイオード端子以外に、上部から下部まで4つノードがあります(または、6パックのパッケージの場合、左側から右側)。それらは、トランジスタ伝導損失Pcond_Qの端子(円のドッドがある)、トランジスタ・スイッチング損失Psw oの端子、ダイオード伝導損失Pcondの端子(正方形のドッドがあ

。 る)、ダイオードスイッチング損失Pswの端子です。

複数パックのパッケージでは、それぞれの合計損失が出力されます。

パッケージスタイル(例、TO-220、TO-262、TO-247、等)はStyleフィールドにより定義されます。

絶対最大定格 (Absolute Maximum Ratings)

 V_{DS,max} (V)
 最大ドレイン・ソース間電圧

 I_{D,max} (A)
 最大ドレイン電流

 T_{i,max} (°C)
 最大接合部温度

電気的特性 – トランジスタ (Electrical Characteristics – Transistor)

RDS(on) (ohm)	試験時のドレイン・ソース間オン抵抗 <i>R_{DS(on)_b}</i>
	[試験条件:ジャンクション温度 <i>Tj_b</i> (℃、通常は25℃)
	ゲート・ソース間電圧 <i>V_{GS}</i> (V)、ドレイン電流 <i>I</i> _D (A)]
Temperature Coefficient	オン抵抗の温度係数 <i>K_T</i> (1/°C)
VGS(th) (V)	ゲート閾値電圧V _{GS(th)} [測定条件:ドレイン電流 <i>lo</i> (A)]
g _{fs} (S)	順伝達コンダクタンスg _{fs}
	[測定条件: ドレイン・ソース間電圧 <i>Vos</i> (V)、ドレイン電流 <i>lo</i> (A)]
t _r (ns) and t _f (ns)	立ち上がり時間tr及び立下り時間tr
	[測定条件:ドレイン・ソース間電圧 <i>V</i> _D s(V) 、ドレイン電流 <i>I</i> _D (A) 、ゲー
	ト抵抗 <i>R</i> g(Ω)]
Qg, Qgs, and Qgd	総ゲート電荷量 Qg, ゲート・ソース間電荷量Qgs, ゲート・ドレイン間電
	荷量(ミラー容量)Qgd(nC)
	[測定条件: ドレイン・ソース間電圧 <i>V</i> os(V)、ゲート・ソース間電圧
	Vos(V)、ドレイン電流Io(A)]
Ciss, Coss, and Crss	入力容量Ciss, 出力容量Coss, 逆伝達容量Crss (すべてpF)
	[測定条件: ドレイン・ソース間電圧 <i>V</i> os(V)、ゲート・ソース間電圧
	<i>V_{DS}</i> (V) テスト周波数(MHz)]

電気的特性 -ダイオード (Electrical Characteristics - Diode)

V _d vs. I _F	順伝導電圧降下Vavs.順電流IF
trr and Qrr	逆回復時間tศ、ns 及び逆回復電荷量Qศ, µC
	[測定条件:順電流 <i>l_F</i> (A)、 電流の変化率di/dt(A/µs)、接合部温度 <i>T</i> ;(℃)]

熱的特性 (Thermal Characteristics)

Rth(j-c)	接合・ケース間熱抵抗、℃/W
R _{th(c-s)}	ケース・シンク間熱抵抗、℃/W

Rth(c-s)	ケース・シンク間熱抵抗、	°C/V

寸法と質量 (Dimensions and Weight)

Length (mm)	デバイスの長、mm
Width (mm)	デバイスの幅、mm
Height (mm)	デバイスの高さ、mm
Weight (g)	デバイスの質量、g

絶対最大定格、熱的特性、寸法と質量、立ち上がり時間 t、立下り時間 tは損失計算には使用されないた め、入力はオプションとなります。

MOSFETのオン抵抗は、トランジスタのジャンクション温度の関数となります。端子シンボル Pcond Qま たは、Psw q の電圧が、トランジスタのジャンクション温度 Ti を単位℃にて表示します。例えば、電圧値 25V が表示された場合には、25℃を表します。MOSFET のオン抵抗は下記の通り表現されます。

$$R_{(DS)on} = R_{(DS)on_{b}} \cdot (1 + K_{T} \cdot (T_{j} - T_{j_{b}}))$$

温度係数は下記の通り計算されます。

$$K_T = \frac{\frac{R_{(DS)on}}{R_{(DS)on_b}} - 1}{T_j - T_{j_b}}$$

通常、25℃でのテスト状態を基準とします。基準値に基づいて RDS(on)を標準化することで下の式を得ま す。

$$K_T = \frac{R_{(DS)on_normalized} - 1}{T_i - 25}$$

オン抵抗 RDS(on)を、毎タイムステップにて算出してシミュレーションに使用します。

また、ダイオードの順方向電圧降下 V_aは、電流値に依存して変動します。新たな順方向電圧値がシミュレーションに使用されます。

4.10.4.2 MOSFET 損失計算 (MOSFET Loss Calculation)

損失計算にシミュレーションでデータベースの MOSFET デバイスを選択して、使用することができます。熱モジュールのライブラリの MOSFET には次のパラメータがあります。

J	LI.	- 4	÷÷÷
1	Т	1	宋

パラメータ	機能
Device	デバイスデータベースから選択された特定デバイス
周波数	損失が計算される周波数(Hz)
V _{GG+} (上位)	ゲート・ソース間電圧の上位レベル、V
V _{GG-} (下位)	ゲート・ソース間電圧の下位レベル、V
R _{g_on} (turn-on)	ターンオンの時ゲート抵抗
$R_{g_{off}}$ (turn-off)	ターンオフの時ゲート抵抗。ほとんどの場合、ターンオンゲート抵抗 Rg_on とターンオフゲート抵抗Rg_off は同一です。しかし、これらの2 つの抵抗は異なる場合もあります。
R _{DS(on)} 校正係数	オン抵抗R _{DS(on)} の較正係数
g _{fs} 校正係数	順伝達コンダクタンスgfsの較正係数
P _{cond_Q} 校正係数	トランジスタ伝導損失Pcond_Qの較正係数Kcond_Q
Psw_Q校正係数	トランジスタ・スイッチング損失Psw_Qの較正係数Ksw_Q
Pcond_D校正係数	ダイオード伝導損失Pcond_Dの較正係数Kcond_D
Psw_D校正係数	ダイオードスイッチング損失Psw_Dの較正係数Ksw_D
並列デバイス数	並列に接続された同一デバイスの個数

パラメータ周波数は損失が計算される周波数です。例えば、デバイスが 10kHz のスイッチング周波数で 作動して、パラメータ周波数が 10kHz に設定されると、損失はスイッチング周期の値になります。しかし ながら、パラメータ周波数を 60Hz に設定すると、損失は 60Hz 周期の値になります。

パラメータPcond_Q 校正係数はトランジスタの導通損失の修正係数です。例えば、修正前の算出された 導通損失をPcond_Q_calとすると、以下の式の様になります。

 $P_{cond O} = K_{cond O} * P_{cond O cal}$

同様に、パラメータP_{sw_Q}校正係数はトランジスタのスイッチング損失の修正係数です。例えば、修正前の算出されたスイッチング損失をP_{sw_Q cal}とすると、以下の式の様になります。

 $P_{sw \ Q} = K_{sw \ Q} * P_{sw \ Q \ cal}$

パラメータ Pcond_D 校正係数と Psw_D 校正係数はダイオードの損失に対して、同様の働きをします。

複数の同一な動作をする MOSFET デバイスが並列に接続される場合、回路図上に MOSFET ブロックを 1 つだけ設置し、パラメータにデバイスの個数を設定してください。同一なデバイスブロックが回路内で複 数個並列接続されている場合、シミュレーション中で僅かな差が発生し、それが原因となりデバイスの電 流が正確に一致しない可能性が有るからです。*並列デバイス数*が1より大きい値に設定されている場合、 並列接続されているデバイスを流れる電流は、各デバイスに均等に分割されて流れるようになります。よ って合計損失は各デバイスの損失を並列デバイス数の値で乗算して算出されます。出力端子 Pcond_D、Psw_D、 Pcond_Q、Psw_Qから流れる電流は、並列接続されている全てのデバイスの合計損失になります。

ダイオードの導通損失端子 Pcond_D またはスイッチング損失端子 Psw_D の電圧は、算出された逆並列ダイ オードの接合温度 T_j表し、データベースの曲線からダイオードの順方向電圧降下を算出する際に使用され ます。算出された T_jが 2 つの曲線の接合温度の間にある場合、値の補間をします。算出された接合温度が 曲線の最低接合温度よりも低い場合や、曲線の最高接合温度よりも高い場合、曲線は最低または最高接合 温度に対応する物が使用されます。曲線が一つだけの場合は、その曲線は算出された接合部温度に関係な く使用されます。

導通損失

トランジスタ伝導損失は次のように計算されます。

トランジスタ伝導損失=I²*R_{DS(on)}

ここで、*I*Dはドレイン電流、及び RDS(on)はオン抵抗です。

<u>スイッチング損失</u>

トランジスタターンオン損失は次のように計算されます。

トランジスタターンオン損失=Eon*f

ここで、*Eon* はトランジスタターンオンエネルギー損失、*f* は入力パラメータ*周波数*で定義された周波数です。

トランジスタターンオフ損失は次のように計算されます。

トランジスタターンオフ損失=Eoff*f

ここで、*E*off はトランジスタターンオフエネルギー損失です。

エネルギー損失 Eon と Eoff は MOSFET デバイスのゲート電流、入力/出力/帰還容量、およびゲート電荷量の情報に基づく電流波形と電圧波形の 立ち上がり時間、立ち下がり時間を用いて計算されます。

ゲート電荷による損失は上記のスイッチング損失に含まれていない事に注意してください。ゲート電荷 による損失は通常ターンオン・ターンオフスイッチング損失に比べて非常に微量で、全負荷状態では無視 することが出来ます。しかし、軽負荷状態では十分な量になります。ゲート電荷損失 *Ploss_Qg*の計算は、以 下のとおりです。

$$P_{loss \ Og} = Q_g * V_{GG} * f_{sw}$$

ここで、Qgは総ゲート電荷量、VGGはゲート電源電圧、fswはスイッチング周波数です。

さらに、MOSFET デバイスは十分な定格導通電流を保証するように確実に選択されなければなりません。MOSFET の定格電流がとても低い場合、PSIM はスイッチングの立ち上がり、立下り時間の計算が出 来ず、エラーメッセージを表示します。シミュレーション中は、MOSFET デバイスを導通できる最大ドレ イン・ソース間電流は、以下のとおりです。

$$I_{o,\max} = g_{fs} * \left(V_{GG} - V_{GS(th)} \right)$$

電流が Io,maxを超えている場合、ゲート電源電圧を上げるか、より大きな順伝達コンダクタンスを持つ他の MOSFET デバイスを選択してください。

逆並列ダイオードまたはフリーホイールダイオードの損失の計算方法は 4.10.1 に述べた方法と同じで す。

損失 Pcond_Q, Psw_Q, Pcond_D, Psw_Dの単位はワットで、端子から出力される電流の形式で表わされます。よって、損失を測定し表示するには、電流プローブを端子とグラウンドの間に設置してください。損失の値を使用しない場合は、端子を浮いた状態にせず、グラウンドに接続しなければなりません。

計算された損失、特にスイッチング損失の結果は近似値で求められます。結果の正確さはデバイスデー タベースのデータの正確さと実際の回路の動作条件に依存します。ハードウェアによる測定結果で、設計 値と実際の損失を確認することが必要です。計算は瞬時値が用いられます。 4.10.5 インダクタサーマルモジュール (Inductor Thermal Module)

4.10.5.1 データベースのインダクタ (Inductor in Database)

データベースにはインダクタの以下の情報が定義されています。

一般情報

Manufacturer	インダクタメーカ
Part Number	メーカの部品番号
Package	基本パッケージのみ
シンボル	

P_{core} P_{winding}

電気的特性(Electrical Characteris	tics)
L(uH)	インダクタンス (uH)
最大定格 (Maximum Ratings)	
Imax, rms (A)	最大実効定格電流値(A)
コア特性 (Core Information)	
Core Type and Size	コア形状とサイズの定義
Core Material	コア材質の定義
巻線仕様 (Winding Information)	
Winding Type and Size	導体の形状、サイズ、絶縁タイプの定義
Winding Distribution	巻き数、層数、層間の距離、ワイヤ間およびコアとワイヤ間の距離の
	定義
Distribution of Parallel Wires	放射方向および高さ方向の並列ワイヤの配置構成の定義
ギャップ仕様 (Gap Information)	
Gap Data	ギャップの数および各ギャップの長さの定義

新しいインダクタの情報は、Device>>New Inductorを選択して追加することができます。コア材質、 コアおよび巻き線のデータベースは、 Device>>Edit Inductor Core Database, Edit Winding Database, そしてEdit Core Material Databaseにより、追加および更新が可能です。

4.10.5.2 インダクタ損失計算 (Inductor Loss Calculation)

インダクタデータベースを選択して損失計算シミュレーションに使用することができます。サーマルモジュールライブラリ(Thermal Module Library)のインダクタは以下のパラメータにより構成されます。

仕様	
パラメータ	機能
Device	デバイスデータベースから選択されたインダクタ
周波数	損失が計算される基本となる周波数(Hz)
温度フラグ	コア温度の定義手法を示すフラグ。CalculatedまたはFixedのいず れかが選択できます。Calculatedの場合、コア温度は回路の動作条 件から算出され、その温度は損失計算に使用されます。一方、 Fixedではコア温度はユーザにより指定される。これにより、特定 温度での損失が明確に扱われる。
周囲温度	インダクタの周辺温度(℃)
対流	冷却方法を指定する。Forcedは強制冷却、Naturalは自然冷却を指 定する。
空気速度	風量をm/secにて指定する、強制冷却時のみ指定される。
推定コア温度	Temperature Flagが <i>Fixed</i> の場合のみ使用される。コア温度値(℃)。
推定巻線温度	Temperature Flagが <i>Fixed</i> の場合のみ使用される。巻き線温度値 (℃)。
損失計算フラグ	このフラグを0に設定すると、損失計算はシミュレーション開始時 から実行される。一方、1に設定すると、最後の基本周期 (fundamental cycle)期間のみ、損失計算が実行されます。損失計算 はシミュレーションスピードを大幅に悪化させる場合に、本機能は 有効です。
電流フラグ	インダクタ電流の表示

損失PcoreとPwinding (Watts)は、端子の電流出力値として表示されます。損失を算出して表示するためには、電流計を端子とグランド間に接続します。使用しない端子は必ずグランドに接続して下さい。

パラメータ*周波数*はインダクタが励磁される時の基本周波数と定義されます。例えば、20kHzのスイッ チング共振素子を持つ回路の中で、60Hzの電流が流されるインダクタでは、このパラメータ*周波数*は 60Hzに設定します。別の例として、もし20kHzのスイッチング共振素子をもつ直流回路で、直流電流が流 されるインダクタの場合には、パラメータ*周波数*は20kHzと設定します。

サーマルモジュールインダクタのより詳細な情報は、"Tutorial Inductor loss calculation in Thermal Module.pdf"を参照下さい。

4.10.6 デバイスデータベースエディタ (Device Database Editor)

デバイスデータベースエディタ(PcdEditor.exe)は、デバイスを追加、編集、及び管理するためのもの です。PSIMプルダウンメニューの Utilitiesメニューからデータベースエディタを起動します。データベ ースエディタの図を以下に示します。

左側には、データベースエディタヘロードされるデバイスデータベースファイルおよびデバイスのリ ストがあります。デバイスはデバイスのタイプかメーカのいずれかに基づいて表示することができます。 さらに、リストのタイトルバーをクリックすることにより、部品番号、定格電圧あるいは定格電流によ ってデバイスリストをソートすることができます。

新しいデバイスファイルを作成するためには、File > New Device Fileを選んでください。デバイスファ イルをエディタにロードするためには、File > Open Device File選んでください。デバイスファイルを閉 じるには、File > Close Device Fileを選んでください。

右側に各デバイスの情報が示され主に次の情報が各デバイスに定義されます。

メーカと部品番号 (Manufacturer and Part Number)

パッケージ型式 (Package type and style)

絶対最大定格 (Absolute maximum ratings)

電気的特性 (Electrical characteristics)

熱的特性 (Thermal characteristics)

寸法と質量 (Dimension and weight)

以下はインダクタのサーマルシミュレーションに必要となる情報です。

メーカと部品番号 (Manufacturer and Part Number)

パッケージ型式 (Package type and style)

最大定格 (Maximum ratings)

電気的特性 (Electrical characteristics)

コア、巻線、ギャップ仕様 (Core, winding and gap information)

デバイスファイルには、インダクタ、ダイオード、IGBT、デュアルIGBT-ダイオードモジュール、MOSFET の計5種類のデバイスを加えることができます。

新しいデバイスを作成するためには、Device(デバイス)メニューに移動して、New Diode(新しいダイ オード)、New IGBT(新しいIGBT)、New IGBT-DIODE(新しいIGBTダイオード)、New MOSFET(新し いMOSFET)、New Inductor(新しいインダクタ)のいずれかを選んでください。

同じデータベースファイルに既存のデバイスのコピーを作るために、リストのデバイスをハイライトして**Device > Save Device As**を選んでください。既存のデバイスのコピーを作って別のデータベースファ イルに保存するために、最初にリスト中のデバイスを強調して、次に、File Nameリスト中のファイル名 をハイライトしてください。それから、**Device > Save Device As**を選んでください。 4.10.7 データベースにデバイスを追加 (Adding a Switching Device to Database)

デバイスデータベースファイルにデバイスを加える方法を明らかにするために、デバイスデータベース ファイル「diode.dev」へPowerexのディスクリートダイオードCS240650(600V、50A)を追加する手順を 以下に示します。

- PcdEditor.exeを起動してください。FileメニューのNew Device Fileを選択し、"diode.dev"
 ファイルを作成してください。このファイルはデフォルトでPSIMプログラム・フォルダの下のデバイスサブ・フォルダに置かれます。
- 「File Name」リストでファイル名「Diode」をハイライトしたまま、Device ->New Diodeを 選んでください。メーカが「New」と部品番号が「New」状態でダイオードはデータベースフ ァイルに追加されます。
- -スクリーンでPowerex CS240650データシートのPDFファイルを表示してください。
- PcdEditorで、データシートからこのデバイスについて次の情報を入力してください。
 - デバイス情報

メーカ	Powerex
メーカ	Powerex

部品型式 CS240650

パッケージ Discrete

絶対最大定格(Absolute Maximum Ratings)

- Vrrm,max (V) 600
- I_{F,max} (A) 50
- T_{i.max} (oC) 150
- $-V_d$ vs. *I_F* グラフ領域の上にある**Edit**ボタンをクリックして電気的特性、順電圧特性*V_d* vs. *I_F* を定義してください。

以下のダイアログウィンドウが表示されます。 ダイアログウィンドウは2ページあります。 グラフ(Graph)と条件(Conditions).

グラフページはx軸とy軸セッティング、データポイントおよびグラフを含んでいます。この 場合、y軸は順方向電圧降下Vaでx軸は順方向電流IFです。軸は倍率(10⁻³はm、10⁻⁶はuを使用 可能)を持つことができます。

条件ページは、グラフが得られる条件を含んでいます。

グラフを定義するには2つの方法があります。一つの方法は手動でグラフデータ・ポイントを入力する ことです。もう一つの方法はグラフウィザードを使用し、データシートからグラフを直接得ることです。 データポイントが少ない場合は、手動でグラフを定義した方が簡単です。しかしながら、グラフがある ならばグラフウィザードを使用するとより簡単になります。

<u>手動でグラフを定義</u>

データシートの「Maximum On-State Characteristics」グラフを参照して、x/y軸セッティン
 グに対する値を以下のように入力してください。

X0	1
Xmax	1000
Y0	0.6
Ymax	2.6
X in log	checked

-目視によりグラフを観察して、数データポイントを選択してください。それから、データ域 に次のデータポイントを入力してください。

(1,0.7) (10,1.05) (100,1.8) (200,2.2) (300,2.4)

それからグラフを表示するために、Refreshボタンをクリックしてください。

- Conditions タブをクリックして、25℃のJunction Temperatureを入力してください。

データがExcelファイルの場合は、データエリアに直接コピーすることができます。 データをコピーするには、二つのデータ列を選択し、Ctrl+Cを押してコピーします。その 後、データエリアにカーソルを移動し、Ctrl+Vを押して貼り付けてください。

A	B	С	D		Α	В	С	D
				1				
2	IF	Vd		2		IF	Vd	
3	1	0.7		3		1	0.7	
4	10	1.05		4		10	1.05	
5	100	1.8		5		100	1.8	
6	200	2.2		6		200	2.2	
7	300	2.4		7		300	2.4	
8				8				

<u>グラフウィザードを利用してグラフを定義</u>

ーグラフウィザードを始めるために、フォワードウィザードアイコン 翆 をクリックしてく ださい。

ー以下の通りにデータシートのグラフをスクリーンに表示してください。

そして、プリントスクリーンキー(キーボード上の表記「Prt Scrn」)を押して、クリップボード にスクリーン図をコピーしてください。

ースクリーン図をPcdEditorのグラフウィンドウに貼り付けるために、フォワードウィザード
 アイコン
 をクリックしてください。ウィンドウの中で完全なグラフが表示されるよう
 に、マウスの左ボタンを押し続けてドラッグしてきちんとグラフをグラフウィンドウに置い
 てください。グラフが大き過ぎるか、または小さすぎるなら、バックワードウィザードアイ
 コン
 をクリックして、以前のステップに戻ってください。次に、Adobe acrobatでグラ

フの図をリサイズして、もう一度クリップボードにスクリーン図をコピーしてください。グ ラフダイアログウィンドウは以下のように表示されます。

フォワードウィザードアイコン ᅌ をクリックして次のステップに進んでください。

 ーこのステップでは、グラフ領域の境界を定義します。グラフの原点(通常左下隅)でマウスの 左ボタンをクリックし、原点の反対の角(通常右上隅)でマウスの左ボタンをクリックしま す。グラフの原点が左下隅でなく各コーナーのうちのいずれか1つである場合もあります。 グラフ原点の位置をより正確に見つけるために、マウスの右ボタンをクリックして拡大して ください。ズームを解除するためには、Esc(Escape))キーを押してください。 この後に、青い長方形がグラフの境界の近くに現われます。また、ダイアログ・ウィンドウ が以下のように表示されます。

次のステップへ移動するためにフォワードウィザードアイコン ➡ をクリックしてください。 -このステップでは、x軸とy軸の設定を定義します。以下の通りに設定を入力してくださ い。

X0	1
Xmax	1000
Y0	0.6
Ymax	2.6
X in log	checked

次のステップに移るためにフォワードウィザードアイコン [▲] をクリックしてください。 - 波形の上でマウスの左ボタンをクリックして、データポイントを得てください。この場合、 1A、10A、100A、および300A周辺で4つデータポイントを得ています。もう一度、画像を拡 大するためにマウスの右クリックをしてください。

データポイントを収集しているときにデータポイントを接続する赤い線が現れます。データ

ポイント収集プロセスを完了するために、フォワードウィザードアイコン ^(☆) をクリックし てください。最終的なグラフダイアログウィンドウは、以下の通りに表示されます。 /

グラフ上のデータポイントのx軸とy軸の値を見るためには、グラフエリアの内部にカーソル を置いてください。カーソル・図は反対に変わります。カーソルのx軸とy軸はダイアログウ ィンドウの右上に表示されます。x軸とy軸の値を読み込むために、カーソルを波形の最上部 に置いてください。

ー同じプロセスで、逆回復特性trr vs. IF, Irrv.s. IF, 及びQrr vs. IFを定義してください。

- ー熱的特性を入力してください。
 - Rth(j-c) 0.6
 - Rth(c-s) 0.4
- 寸法と質量を入力してください。
 - Length (mm) 53
 - Width (mm) 36
 - Height (mm) 29

デバイス情報を保存するために Device -> Save Device を選んでください。これで、データベースへダイ オードを追加するプロセスの完了になります。

4.11 再生可能エネルギーモジュール (Renewable Energy Models)

再生可能エネルギーモジュールライブラリは下記の素子があります。

太陽電池モジュール(Solar modules) : 物理モデル(physical model)、機能モデル(functional model)、 cSi モデル(cSi model)、薄膜モデル(thin-film model)

風力発電(Wind turbine) リチウム-イオンバッテリー (Lithium-Ion battery) ウルトラキャパシタ (Urtracapacitor)

4.11.1 太陽電池モジュール (Solar Modules)

4.11.1.1 太陽電池モジュール 機能モデル (Solar Module – Functional Model)

機能モデルは、i-v 特性に基づいて太陽電池モジュールを表現します。メーカのデータシートから入手で きる、4 種類のパラメータ入力のみでシミュレーションを開始できます。 シンボル

_o Pmax	

シンボルの"+"と"ー"のノードはそれぞれ正と負の端子を表します。上部の端子はこの動作条件での、理論上の最大電力(W)になります。

正負端子はパワー回路端子で、その他の端子は制御回路の端子として扱われます。

仕様

パラメータ	機能
開放電圧 Voc	太陽電池の端子を開放したときの測定電圧(V)
短絡電流 lsc	太陽電池の端子を短絡したときの測定電流(A)
最大電力時電圧 Vm	最大出力電力時の太陽電池モジュールの端子電圧(V)
最大電力時電流 lm	最大出力電力時の太陽電池モジュールの端子電流(A)

4 つのパラメータ(開放電圧、短絡電流、最大電力時の電圧・電流)を用いて、i-v カーブを生成します。下 図に通常の太陽電池における、i-v、p-v カーブを示します。

図から、電圧が増加するのに従って太陽電池モジュールの出力電力が増加し、あるポイントで出力電力 が最大になることがわかります。様々な運転条件の下で最大出力点(Maximum PowerPoint Tracking: MPPT)を見つけるために、各種制御方式が提案されています。

4.11.1.2 太陽電池モジュール - 物理モデル (Solar Module – Physical Model)

太陽電池モジュール物理モデルは、光強度と温度ばらつきまで考慮するため、より正確にシミュレーションできます。

シンボル

シンボルの"+"と"-"のノードはそれぞれ正と負の端子を表しています。"S"で示したノードは光強度入力 (W/m²)を、"T"で示したノードは周囲温度入力(℃)を表します。上部のノードは、この動作条件で与えられ る理論上の最大電力(W)になります。正負端子のノードがパワー回路用なのに対し、その他のノードはすべ て制御回路用になります。

仕様

パラメータ	機能
セル数 Ns	太陽電池のセル数 N _s 。太陽電池モジュールは N _s 個の連続した太陽 電池から構成されます。
光強度 S0	試験環境下での光強度 <i>So</i> (W/m ²)。この値は通常 1000 W/m ² です。 (データシートによる)
基準温度 Tref	試験環境下の温度 <i>T_{ref}</i> (°C)
直列抵抗 Rs	各太陽電池の直列抵抗 R _s (Ω)
シャント抵抗 Rsh	各太陽電池の並列抵抗 R _{sh} (Ω)
短絡回路電流 Isc0	試験温度 Tref時の各太陽電池の短絡回路電流 Isco(A)
飽和電流 Is0	試験温度 Tref時の各太陽電池のダイオード飽和電流 Iso(A)
バンドエネルギー Eg	各太陽電池のバンドエネルギー(eV)。結晶シリコンでは約 1.12、ア モルファスシリコンでは約 1.75 です。
理想係数 A	各太陽電池の理想係数 A。放射係数ともよばれ、結晶シリコンでは約2、アモルファスシリコンでは2より小さい値になります。
温度係数 Ct	温度係数 <i>C_t</i> (A/ ^o Cまたは A/K)
係数 ks	光強度が太陽電池の温度に影響を及ぼす係数 ks

Ns個のセルからなる太陽電池モジュールの、1つのセルの詳細モデルの等価回路を以下の図に示します。

太陽電池(セル)の方程式は以下の通りです。

$$i = i_{ph} - i_d - i_r$$

$$i_{ph} = I_{sc0} \cdot \frac{S}{S_0} + C_t \cdot (T - T_{ref})$$

$$i_d = I_0 \cdot \left(e^{\frac{qv_d}{AkT}} - 1\right)$$

$$I_0 = I_{s0} \cdot \left(\frac{T}{T_{ref}}\right)^3 \cdot e^{\frac{qE_g}{Ak}\left(\frac{1}{T_{ref}} - \frac{1}{T}\right)}$$

$$i_r = \frac{v_d}{R_{sh}}$$

$$T = T_q + k_s \cdot S$$

ここで q:電子の電荷(q=1.6x10⁻¹⁹C)、k:ボルツマン定数(k=1.3806505x10⁻²³)、S:光強度、T_A:周囲の温度、v:太陽電池モジュールの端子電圧、i:太陽電池モジュールの+端子から流出する電流を表します。

詳細モデルのパラメータの一部はデータシートから得ることができますが、残りは実験データから決定 します。詳細モデルのパラメータをデータシートから得るためのツールとして、Utilities メニュー内に Solar Cell (Physical Model)が用意されています。

このツールでパラメータを決定する方法については、PSIM インストールフォルダの doc フォルダ内に ある Tutorial- Solar Module (Physical model).pdf(英文)をご参照ください。

4.11.1.3 太陽電池モジュール - 結晶シリコン型/薄膜型(Solar Module - cSi and Thin-Film Models)

結晶シリコン型太陽電池モジュール、および薄膜型モデルは、EN50530基準を参照して提供されます。 予め、関連するデータは i-v 特性方程式に含まれているため、3 種類のパラメータのみで定義することがで きます。

シンボル

EN50530 (cSi)	EN50530 (thin film)	
° → + + •	°→ <u>+</u> +++	
°T	°T	

シンボルの"+"と"-"のノードはそれぞれ正と負の端子を表しています。"S"で示したノードは光強度入力 (W/m²)を、"T"で示したノードは周囲温度入力(℃)を表します。上部のノードは、この動作条件で与えられ る理論上の最大電力(W)になります。正負端子のノードがパワー回路用なのに対し、その他のノードはすべ て制御回路用になります。

仕様

パラメータ	機能
最大電力	最大出力(W)
最大電力電圧	最大出力時の端子電圧(V)
試験条件温度	試験環境下の温度(°C)

cSi および薄膜モデルの電流-電圧特性方程式は以下の通りです。

$$I_{pv} = I_{ph} - I_0(e^{(V_{pv} + I_{pv}R_s)/(mVr)} - 1) - (V_{pv} + I_{pv}R_s)/R_p$$

ここで

$$I_0 = C_0 T_{mod}^3 e^{-\frac{V_{PV}}{V_r}}$$

および

$$V_T = \frac{kT_{mod}}{e_0}$$

モジュール温度の線形温度モデルは以下の通りです。

$$T_{mod} = T + \frac{c}{1000 \frac{W}{m^2}} G$$

上記の式において、

- *I_{pv}* モジュール電流 (Module current)
- *Io* ダイオード飽和電流 (Diode saturation current)
- *I_{ph}*光電流 電流源 (Photo current, source current)
- V_{pv} モジュール電圧 (Module voltage)
- Vt 温度電圧 (Temperature voltage)
- *V*_{gap} バンドギャップ (bandgap)
- Rs 直列抵抗 (serial resistance)
- R_p 並列抵抗 (parallel resistance)
- T 絶対周囲温度 (Absolute ambient temperature) (K)
- T_{mod} モジュール温度 (Module temperature) (K)

G 照度 (Irradiance) (W/m2)

- c 線形温度モデルの定数 (Constant for the linear temperature model)
- Co ダイオード飽和電流の係数 (Coefficient of diode saturation current)
- M ダイオード係数 (diode factor)

- eo 電気素量 (Elementary charge)
- k ボルツマン定数 (Boltzmann constant)

モデルの i-v カーブの定義に用いられる、テクノロジ依存のパラメータを以下に示します。

	cSi	Thin Film	Tolerance
$\frac{V_{mpp}}{V_{mpp}}\Big _{G=200(\overline{W}/m^2)}$ $\overline{V_{mpp}}\Big _{G=1000(\overline{W}/m^2)}$	0.95	0.98	+/- 1%
$\frac{V_{mppSTC}}{V_{ocSTC}}$	0.8	0.72	< 1%
$\frac{I_{mppSTC}}{I_{scSTC}}$	0.9	0.8	< 1%

MPPT テストに使用する太陽電池モデル (PV generator model for MPPT performance tests) MPP、開放電圧比

$$FF_V = \frac{V_{mppSTC}}{V_{ocSTC}}$$

MPP、短絡電流比

$$FF_I = \frac{I_{mppSTC}}{I_{scSTC}}$$

PV 電流の PV 電圧関数表記

$$I_{pv} = I_{sc} \left(e^{\frac{V_{pv}}{V_{oc}C_{AG}}} - 1 \right)$$

照度G、温度Tに依存する短絡電流

$$I_{sc} = I_{scSTC} \frac{G}{G_{STC}} \bullet [1 + \alpha \cdot (T_{pv} - T_{STC})]$$

照度、温度に依存する解放電圧

$$V_{OC} = V_{ocSTC} \cdot (1 + \beta \cdot (T_{pv} - T_{STC})) \left(\ln \left(\frac{G}{C_G} + 1 \right) \cdot C_v - (C_R \cdot G) \right)$$

PV 温度は以下の環境温度条件に従います

$$T_{PV} = T_{amb} + T_0 + \frac{k}{1 + \tau \cdot s} \cdot G$$

ここで以下の通り定義されます。

T _{PV}	太陽電池温度計算值 (Computed PV generator temperature)
Tamb	環境温度 (Ambient temperature)
To	補正温度 (Correction temperature) (T0 = -30°C)
k	照度ゲイン (Irradiance gain) (k=0.03 km2/W)
τ	時定数 (Time constant) (τ = 5 minutes)
α	電流の温度係数 (Temperature coefficient of the current)
β	電圧の温度係数 (Temperature coefficient of the voltage)
CR, CV, CG	テクノロジ依存の補正係数 (Technology depending correction factor)

照度依存電流 10 は以下の通り定義されます。

$$I_0 = I_{scSTC} \left(\left(1 - FF_I \right)^{\left[\frac{1}{1 - FF_V} \right]} \cdot \frac{G}{G_{STC}} \right)$$

定数 CAQは以下の通り定義されます。

$$C_{AQ} = \frac{FF_V - 1}{\ln(1 - FF_I)}$$

照度 200W/m²における V_{MPP}と照度 1000W/m²における V_{MPP}の比は以下の通り定義されます。

$$V_{L2H} = \frac{V_{MPP}|_{G = 200(W/m^2)}}{V_{MPP}|_{G = 1000(W/m^2)}}$$

モデルのパラメータ以下の通り定義されます。

	cSi	Thin-Film	Tolerance
FF_V	0.8	0.72	< 1%
FF_I	0.9	0.8	< 1%
$C_{G}[W/m^{2}]$	2.514E-03	1.252E-03	-
C_V	8.593E-02	8.419E-02	-
$C_{R} [m^{2}/W]$	1.088E-04	1.476E-04	-
V _{L2H}	0.95	0.98	±1 %
α	0.04	0.02	
β	-0.4	-0.2	

4.11.2 風車 (Wind Turbine)

風車のシンボルとパラメータは以下の通りです。 シンボル

ш	1羊
ŢТ	1家

パラメータ	機能	
公称出力電力	ピッチ角が0°時の風車の最大出力電力(W) このモデルはピッチ角が0°の時に最も高い電力を出力できるよう設 計されています。この値は発電機の定格出力を超えない値に設定し て下さい。	
基本風速	風車の最大出力電力を発生させる基本風速(m/s)	
基本回転数	風車の最大出力電力を発生させる基本回転数(rpm)	
初期回転数	風車の初期回転数(rpm)	
慣性モーメント	風車羽根の慣性モーメント(kg*m ²)	
トルクフラグ	風車の内部トルクを表示させるフラグ(0:非表示、1:表示)	
マスタ/スレーブフラグ	接続された機械系のマスタ/スレーブフラグ(0:スレーブ、1:マスタ)	

このシンボル中で"w"のノードは風速(m/s)を表し、"p"のノードは羽根のピッチ角(deg.)を表します。これ らのノードはいずれも制御回路用です。

風車によって生成される電力は、以下の方程式で表されます。

$$P = \frac{1}{2} \cdot A \cdot v_{wind}^3 \cdot \rho \cdot C_p$$

ここで A は回転羽根の面積、 v_{wind} は風速、 ρ は空気密度、 C_p は出力係数です。出力係数 C_p は周速比 λ と 羽根のピッチ角 β の関数で、以下のように表されます。

$$C_{p} = c_{1} \cdot (c_{2} - c_{3}\beta - c_{4}\beta^{x} - c_{5}) \cdot e^{-c6} + c_{7}$$

ここで c1=0.5、c2=116* λ '、c3=0.4、c4=0、c5=5、c6=21* λ '、c7=0.014* λ 、また

$$\lambda = \frac{\omega_{m} \cdot Rblade}{v_{wind}}$$
$$\lambda' = \frac{1}{\lambda + 0.08\beta} - \frac{0.035}{\beta^3 + 1}$$

となります。ここで、 ω_m はロータの回転速度(rad/sec)、Rblade は回転羽根の半径(m)を表します。 この出力係数 C_p と周速比 λ 、羽根のピッチ角 β との関係は以下のグラフに表されます。

この図は周速比 λ が 8.18 の時に出力係数 C_p が最大値 0.49 をとることを示しています。C_p が最大値のと きの C_p と λ の値を公称値とするため、この図より C_{p_nom}=0.49、λ_{nom}=8.18 と決定されます。風車を制御す る一つの方法は、公称値で(または公称値付近で)周速比を維持することであり、このとき風車が生成する電 力は最大値となります。

4.11.3 リチウムイオンバッテリモデル (Lithium-Ion Battery Model)

リチウムイオンバッテリモデルが提供されています。

二つのシンボルから構成されています。一つは、バッテリ、もう一つは、バッテリセルです。 **シンボル**

仕様

パラメータ	機能
直列セル個数	バッテリパック内の直列のセルの個数 Ns
並列セル個数	バッテリパック内の並列のセルの個数 Np
電圧ディレーティング係数	電圧の定格ディレーティング係数 Ks 0(100%の定格低減)から 1(定格低減なし)まで設定できます。
容量ディレーティング係数	容量の定格ディレーティング係数 Kp 0(100%の定格低減)から 1(定格低減なし)まで設定できます。
定格電圧	バッテリセルの定格電圧(Erated) (V)
対応電圧	最大容量に対応したバッテリ電圧(Ecut) (V)
定格容量	バッテリセルの定格容量(Qrated) (Ah)
内部抵抗	バッテリセルの内部抵抗(Ohm)
放電電流	放電曲線における放電電流(A)
容量係数	Q0(0V での放電容量)の Qmax に対する比。 1 または 1 より少し大きくなります。
最大電圧	バッテリセルのフル(または最大)電圧(Efull) (V)
指数バッテリ電圧	放電曲線における指数領域の終端のバッテリ電圧(Etop)(V)
公称バッテリ電圧	放電曲線における公称領域の終端のバッテリ電圧(Enom)(V)
最大容量	バッテリセルの最大容量(Qmax) (Ah)
指数バッテリ容量	放電曲線における指数領域の終端のバッテリ容量(Qtop) (Ah)
公称バッテリ容量	放電曲線における公称領域の終端のバッテリ容量(Qnom)(Ah)
初期充電状態	充電状態(SOC)(0から1まで)

バッテリイメージの上側や、バッテリセルシンボルイメージの横に描かれているノードは SOC 出力用 のものです。これは、制御回路ノードです。

パラメータ Erated, Ecut, Qrated はメーカーのデータシートから直接読み取ることができ他のいくつかの パラメータはバッテリの放電曲線から求めることができます。

典型的な放電曲線は次のようになります。

CapacityFactor はほぼ Q0(0Vの時の容量)と Qmax のときの比になります。その値は1に近い値であり バッテリ電圧は SOC=0 の時に Ecut に等しくなるように設定する必要があります。

バッテリパラメータは、一つのバッテリセルに対して使用します。一方、モデルは、直列または並列の セルが一つでない場合のバッテリパックを定義するために使用します。バッテリパックでは、全ての電圧 は、Ns*Ks倍で乗算する必要があります。同様に、全ての容量は、Np*Kpで、また抵抗は Ns/Npで乗算 する必要があります。例えば、バッテリパック全体では以下の通りとなります。

$$E_{rated_total} = N_s \cdot K_s \cdot E_{rated}$$

$$E_{cut_total} = N_s \cdot K_s \cdot E_{cut}$$

$$E_{full_total} = N_s \cdot K_s \cdot E_{full}$$

$$E_{top_total} = N_s \cdot K_s \cdot E_{top}$$

$$E_{nom_total} = N_s \cdot K_s \cdot E_{nom}$$

$$Q_{rated_total} = N_p \cdot K_p \cdot Q_{rated}$$

$$Q_{max_total} = N_p \cdot K_p \cdot Q_{max}$$

$$Q_{top_total} = N_p \cdot K_p \cdot Q_{top}$$

$$Q_{nom_total} = N_p \cdot K_p \cdot Q_{nom}$$

$$R_{battery_total} = \frac{N_s}{N_p} \cdot R_{battery}$$

リチウムイオンバッテリモデルの定義及び使用方法についての詳細な説明は、"Tutorial – how to use lithium-lon battery mode.pdf"を参照してください。

4.11.4 ルックアップテーブルを用いたバッテリモデル(Battery (Lookup Table) Model) ルックアップテーブルを用いたバッテリモデルが提供されています。

シンボル

仕様

パラメータ	機能
直列セル個数	バッテリパック内の直列のセルの個数 Ns
並列セル個数	バッテリパック内の並列のセルの個数 Np
電圧ディレーティング係数	電圧の定格ディレーティング係数 Ks 0(100%の定格低減)から 1(定格低減なし)まで設定できます。
容量ディレーティング係数	容量の定格ディレーティング係数 Kp 0(100%の定格低減)から 1(定格低減なし)まで設定できます。
最大容量	バッテリセルの最大容量(Qmax) (Ah)
初期充電状態	充電状態(SOC)(0から1まで)
OCV-SOC テーブル	各開放電圧(OCV)に対する充電状態(SOC)の組を定義したファイル 名。
Rin-SOC テーブル (放電)	放電時における各内部抵抗(Rin)に対する充電状態(SOC)の組を定義 したファイル名。
Rin-SOC テーブル (充電)	充電時における各内部抵抗(Rin)に対する充電状態(SOC)の組を定義 したファイル名。

バッテリイメージの上部にある余分なノードは SOC 出力用で、制御回路ノードです。

モデルは、直列または並列のセル数が1でない場合、バッテリパックを定義するために使用することが できますが、電池パラメータは単一のバッテリセルに適用されることに留意してください。バッテリパッ クの場合、すべての電圧は、Ns*Ks、すべての容量は、Np*Kp、抵抗は、Ns/Npとなります。 電池の等価回路を次に示します。

Rin
(†) ocv
o

内部抵抗 Rin は、充電と放電の二つのテーブルを定義することができます。

メーカーのデータシートからのルックアップテーブルを得るための手順は次のとおりです。

- ·ユーティリティメニューから"Curve Capture Tool"を選択し、データシートから異なる放電電流での放電 容量に対するバッテリ電圧の2つの放電曲線をキャプチャし、テキストデータとして保存します。
- ・回路ファイル"Extracting OCV and Rin_discharge.psimsch"を開きます。("examples\Batteries\Lookup table"にあります。) パラメータファイルの中の I1,I2 および Qmax を設定します。(I1,I2 は前のステッ プで取得した2つの曲線の放電電流です。) 2つのルックアップテーブルを前のステップで取得したテキストデータに置き換えます。Simulation Control の総時間は Qmax より大きい値にします。シミュレーションを実行し、Simview で x 軸を SOC として OCV を表示します。"ファイル" >> "表示方式を名前付けて保存"により表示されたグラフをテキストファイルに保存します。Rin_discharge についても同様に

表示させてテキストファイルに保存します。それぞれのテキストファイルはテキストエディタでファイ ルを開き、最初の行を削除します。これで OCV と Rin_discharge のテーブルが取得できました。

- ·ユーティリティメニューから"Curve Capture Tool"を選択し、時間(分)に対するバッテリ電圧、充電電流 と充電容量の充電曲線をキャプチャし、テキストデータとして保存します。
- ・回路ファイル"Extracting Rin_charge.psimsch"を開きます。("examples\Batteries\Lookup table"にあります。) 4つのルックアップテーブルを前のステップで取得したテキストデータに置き換えます。比例制御器のゲインを 1/Qmax に設定します。Simulation Control の総時間(秒)はキャプチャした時間(分)を秒換算した値より大きい値にします。シミュレーションを実行し、Simview で x 軸を SOC としてRin_chargeを表示します。ファイル">>> "表示方式を名前付けて保存"により表示されたグラフをテキストファイルに保存します。テキストエディタでファイルを開き、最初の行を削除します。これでRin_charge テーブルが取得できました。
- 4.11.5 SOC のルックアップテーブルを用いたバッテリモデル(Battery (Lookup Table SOC) Model)

ルックアップテーブルを用いたバッテリモデルが提供されています。本モデルと、前出のモデル(4.11.4)との違いは、SOC=0(完全放電)とSOC=1(満充電)に対応する放電容量を定義することができる点です。

シンボル

L	L	ł¥.	
1.	L	怀	

パラメータ	機能		
直列セル個数	バッテリパック内の直列のセルの個数 Ns		
並列セル個数	バッテリパック内の並列のセルの個数 Np		
電圧ディレーティング係数	電圧の定格ディレーティング係数 Ks 0(100%の定格低減)から 1(定格低減なし)まで設定できます。		
容量ディレーティング係数	容量の定格ディレーティング係数 Kp 0(100%の定格低減)から 1(定格低減なし)まで設定できます。		
最大容量	バッテリセルの最大容量(Qmax) (Ah)		
SOC=1 時放電容量	SOC=1 に対応した Qext1 におけるバッテリセルの放電容量。		
SOC=0 時放電容量	SOC=0に対応した Qext0 におけるバッテリセルの放電容量。		
初期充電状態	充電状態(SOC)(0から1まで)		
OCV-SOC テーブル	各開放電圧(OCV)に対する充電状態(SOC)の組を定義したファイル 名。		
Rin-SOC テーブル (放電)	放電時における各内部抵抗(Rin)に対する充電状態(SOC)の組を定義 したファイル名。		
Rin-SOC テーブル (充電)	充電時における各内部抵抗(Rin)に対する充電状態(SOC)の組を定義 したファイル名。		

バッテリイメージの上部にある余分なノードは SOC 出力用で、制御回路ノードです。

モデルは、直列または並列のセル数が1でない場合、バッテリパックを定義するために使用することができますが、電池パラメータは単一のバッテリセルに適用されることに留意してください。バッテリパックの場合、すべての電圧は、Ns*Ks、すべての容量は、Np*Kp、抵抗は、Ns/Npとなります。 電池の等価回路を次に示します。

内部抵抗 Rin は、充電と放電の二つのテーブルを定義することができます。

放電曲線に関して、一般的には、定義される放電容量(放電の開始時に)が0である場合にはSOC=1、放 電容量が Qmax の場合には SOC=0 です。しかし、このモデルでは、以下の図に示すように、SOC=0 と SOC=1の点を定義するオプションがあります。

このモデルでは、SOCは0未満、1以上とすることができます。

3のルックアップテーブル OCV、Rin(放電)、および Rin(充電)は、すべての伝統的な SOC の定義を用い て得られることに注意してください。これは放電容量が 0 のとき SOC=1、放電容量が Qmax のとき SOC=0 であることを示しています。

メーカーのデータシートからのルックアップテーブルを得るための手順は次のとおりです。

・ユーティリティメニューから"Curve Capture Tool"を選択し、データシートから異なる放電電流での放電 容量に対するバッテリ電圧の2つの放電曲線をキャプチャし、テキストデータとして保存します。

- ・回路ファイル"Extracting OCV and Rin_discharge.psimsch"を開きます。("examples\Batteries\Lookup table (SOC)"にあります。) パラメータファイルの中の I1,I2 および Qmax を設定します。(I1,I2 は前のステ ップで取得した2つの曲線の放電電流です。) 2つのルックアップテーブルを前のステップで取得した テキストデータに置き換えます。Simulation Control の総時間は Qmax より大きい値にします。シミュレ ーションを実行し、Simview で x 軸を SOC として OCV を表示します。"ファイル" >> "表示方式を名前 付けて保存"により表示されたグラフをテキストファイルに保存します。Rin_discharge についても同様 に表示させてテキストファイルに保存します。それぞれのテキストファイルはテキストエディタでファ イルを開き、最初の行を削除します。これで OCV と Rin_discharge のテーブルが取得できました。
- ·ユーティリティメニューから"Curve Capture Tool"を選択し、時間(分)に対するバッテリ電圧、充電電流 と充電容量の充電曲線をキャプチャし、テキストデータとして保存します。
- ・回路ファイル"Extracting Rin_charge.psimsch"を開きます。("examples\ Batteries\Lookup table (SOC)"に あります。) 4つのルックアップテーブルを前のステップで取得したテキストデータに置き換えます。 比例制御器のゲインを 1/Qmax に設定します。Simulation Control の総時間(秒)はキャプチャした時間 (分)を秒換算した値より大きい値にします。シミュレーションを実行し、Simview で x 軸を SOC とし て Rin_charge を表示します。ファイル">> "表示方式を名前付けて保存"により表示されたグラフをテキ ストファイルに保存します。テキストエディタでファイルを開き、最初の行を削除します。これで Rin_charge テーブルが取得できました。
- 4.11.6 Q のルックアップテーブルを用いたバッテリモデル(Battery (Lookup Table Q) Model)

ルックアップテーブルを用いたバッテリモデルが提供されています。本モデルは、SOC を充 放電容量で置き換えてある点を除いて前出のモデル(4.11.5)と同じです。同様に、本モデルでは、 SOC=0 と SOC=1 に対応する放電容量が定義されます。
シンボル

仕様

パラメータ	機能
直列セル個数	バッテリパック内の直列のセルの個数 Ns
並列セル個数	バッテリパック内の並列のセルの個数 Np
電圧ディレーティング係数	電圧の定格ディレーティング係数 Ks 0(100%の定格低減)から 1(定格低減なし)まで設定できます。
容量ディレーティング係数	容量の定格ディレーティング係数 Kp 0(100%の定格低減)から 1(定格低減なし)まで設定できます。
最大容量	バッテリセルの最大容量(Qmax) (Ah)
SOC=1 時放電容量	SOC=1 に対応した Qext1 におけるバッテリセルの放電容量。
SOC=0 時放電容量	SOC=0に対応した Qext0 におけるバッテリセルの放電容量。
初期充電状態	充電状態(SOC)(0から1まで)
OCV-Q 放電テーブル	各開放電圧(OCV)に対する放電状態(Q)の組を定義したファイル名。
Rin-SOC テーブル (放電)	放電時における各内部抵抗(Rin)に対する充電状態(SOC)の組を定義 したファイル名。
Rin-SOC テーブル (充電)	充電時における各内部抵抗(Rin)に対する充電状態(SOC)の組を定義 したファイル名。

バッテリイメージの上部にある余分なノードは SOC 出力用で、制御回路ノードです。

モデルは、直列または並列のセル数が1でない場合、バッテリパックを定義するために使用することが できますが、電池パラメータは単一のバッテリセルに適用されることに留意してください。バッテリパッ クの場合、すべての電圧は、Ns*Ks、すべての容量は、Np*Kp、抵抗は、Ns/Npとなります。 電池の等価回路を次に示します。

Rin
°
(±) ocv
0

内部抵抗 Rin は、充電と放電の二つのテーブルを定義することができます。

放電曲線に関して、一般的には、定義される放電容量(放電の開始時に)が0である場合にはSOC=1、放 電容量が Qmax の場合には SOC=0 です。しかし、このモデルでは、以下の図に示すように、SOC=0 と SOC=1 の点を定義するオプションがあります。

このモデルでは、SOCは0未満、1以上とすることができます。

3のルックアップテーブル OCV、Rin(放電)、および Rin(充電)は、すべての伝統的な SOC の定義を用い て得られることに注意してください。これは放電容量が 0 のとき SOC=1、放電容量が Qmax のとき SOC=0 であることを示しています。

メーカーのデータシートからのルックアップテーブルを得るための手順は次のとおりです。

- ·ユーティリティメニューから"Curve Capture Tool"を選択し、データシートから異なる放電電流での放電 容量に対するバッテリ電圧の2つの放電曲線をキャプチャし、テキストデータとして保存します。
- ・回路ファイル"Extracting OCV and Rin_discharge.psimsch"を開きます。("examples\ Batteries\Lookup table (Q)"にあります。) パラメータファイルの中の 11,12 および Qmax を設定します。(11,12 は前のス テップで取得した 2つの曲線の放電電流です。) 2つのルックアップテーブルを前のステップで取得し たテキストデータに置き換えます。Simulation Control の総時間は Qmax より大きい値にします。シミュ レーションを実行し、Simview で x 軸を Qdischg として OCV を表示します。"ファイル">> "表示方式を 名前付けて保存"により表示されたグラフをテキストファイルに保存します。Rin_discharge についても 同様に表示させてテキストファイルに保存します。それぞれのテキストファイルはテキストエディタで ファイルを開き、最初の行を削除します。これで OCV と Rin_discharge のテーブルが取得できました。
 ・ユーティリティメニューから"Curve Capture Tool"を選択し、時間(分)に対するバッテリ電圧、充電電流 と充電容量の充電曲線をキャプチャし、テキストデータとして保存します。
- ・回路ファイル"Extracting Rin_charge.psimsch"を開きます。("examples\ Batteries\Lookup table (Q)"にあります。) 4つのルックアップテーブルを前のステップで取得したテキストデータに置き換えます。比例制御器のゲインを 1/Qmax に設定します。Simulation Control の総時間(秒)はキャプチャした時間(分)を秒換算した値より大きい値にします。シミュレーションを実行し、Simview で x 軸を Qext としてRin_charge を表示します。ファイル">>> "表示方式を名前付けて保存"により表示されたグラフをテキストファイルに保存します。テキストエディタでファイルを開き、最初の行を削除します。これでRin_charge テーブルが取得できました。

4.11.7 ウルトラキャパシタモデル (Ultracapacitor Model)

ウルトラキャパシタ(スーパーキャパシタ)は、高パワー密度で充放電回数に優れた電気エネルギー貯蔵 デバイスです。

シンボル

+.	1
0	\leftarrow

,	r	444
1.	I	禄

パラメータ	機能
直列セル個数	直列接続セル数
並列セル個数	並列接続セル数
セルあたりの容量	セル当たりの標準容量 (F)
係数 Kv	電圧係数
抵抗 R1	抵抗係数 R1 (Ω)
キャパシタンス C1	容量係数 C1 (F)
抵抗 R2	抵抗係数 R2 (Ω)
キャパシタンス C2	容量係数 C2 (F)
抵抗 R3	抵抗係数 R3 (Ω)
キャパシタンス C3	容量係数 C3 (F)
抵抗 R4	抵抗係数 R4 (Ω)
最大電圧	セル当たりの最大定格電圧 (V)
初期電圧	セル当たりの初期キャパシタ電圧 (V)

パラメータ Kv、R1、C1 は短時間のキャパシタ応答(秒単位)に対応し、パラメータ R2、C2 は中程度の時間での応答(分単位)に対応します。R3、C3 は長時間の応答(数 100 分)に対応します。R4 は自己放電による容量の損失に対応します。

より詳細な情報は、"Tutorial – Ultracapacitor model.pdf"を参照下さい。

第5章 制御回路素子

この章では、PSIM のライブラリに含まれている素子について、記載します。

5.1 伝達関数ブロック (Transfer Vunction Blocks)

伝達関数ブロックは以下のように多項式で表現します。

$$G(s) = k \cdot \frac{B_n \cdot s^n + \dots + B_2 \cdot s^2 + B_1 \cdot s + B_0}{A_n \cdot s^n + \dots + A_2 \cdot s^2 + A_1 \cdot s + A_0}$$

伝達関数ブロックには次の2種類があります。

* 初期値が 0 のもの(PSIM ライブラリでは、"s-domain Transfer Function"と呼びます)

* 入力パラメータを初期値とするもの(PSIM ライブラリでは、"s-domain Transfer Function (initial value)" と呼びます)

シンボル

仕様

パラメータ	機能
次数	伝達関数の次数
ゲイン	伝達関数のゲイン k
分子係数 Bn Bo	伝達関数の分子の係数
分母係数 An Ao	伝達関数の分母の係数
初期值 xn x1	状態変数 xn x1の初期値

入力 U(s)と出力 Y(s)の関係を Y(s)= U(s)*U(s)のように表すと、周波数領域の表現を以下のような微分方 程式に変換することができます。

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -A_0/A_n \\ 1 & 0 & 0 & \cdots & 0 & -A_1/A_n \\ 0 & 1 & 0 & \cdots & 0 & -A_2/A_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -A_{n-1}/A_n \end{bmatrix} + \frac{k}{A_n} \cdot \begin{bmatrix} B_0 - A_0 \cdot B_n/A_n \\ B_1 - A_1 \cdot B_n/A_n \\ B_2 - A_2 \cdot B_n/A_n \\ \vdots \\ B_{n-1} - A_{n-1} \cdot B_n/A_n \end{bmatrix} \cdot u$$

出力は以下となります。

$$\mathbf{y} = x_n + k \cdot \frac{B_n}{A_n} \cdot u$$

状態変数の初期値 xn ... x1 は s-domain Transger Function (initial value)の設定時に入力します。

例

ここでは、次の二次の伝達関数を考えます。

$$G(s) = 1.5 \cdot \frac{400 \cdot e^3}{s^2 + 1200 \cdot s + 400 \cdot e^3}$$

PSIM では、パラメータを以下のように指定します。

次数 n	2
ゲイン k	1.5
係数 Bn Bo	0, 0, 400k
係数 An Ao	1, 1200, 400k

5.1.1 比例制御器 (Proportional Controller)

比例(P)制御器の出力は入力にゲインを掛けた値になります。 シンボル

↔ K ~		
仕様		
パラメータ	機能	
ゲイン	伝達関数のゲインK	

5.1.2 積分器 (Integrator)

積分器には3種類あります。通常の積分器、外部リセット機能付き積分器、もうひとつは内部リセット 機能付き積分器です。 **シンボル**

221110				
	Regular Integrator	External Resettable Integrator	Internal Resettable Integrator	
	↔		↔ ∫ _M →	
仕様				

積分器の場合

パラメータ	機能	
時定数	積分器の時定数 T(sec)	
出力の初期値	出力の初期値	
ト部リセット機能付き積分器の場合		

	パラメータ	機能
	時定数	積分器の時定数 T(sec)
	出力の初期値	出力の初期値
	リセットフラグ	リセットフラグ(0:エッジリセット;1:レベルリセット)
Þ	内部リセット機能付き積分器の均	景合

パラメータ	機能
時定数	積分器の時定数 T(sec)
出力の初期値	出力の初期値
出力下限値	出力の下限値
出力上限値	出力の上限値

積分器の伝達関数は、以下の通りです。

$$G(s) = \frac{1}{sT}$$

外部リセット付き積分器の出力は制御信号によりリセットすることができます。エッジリセット(リセットフラグ=0)の場合、制御信号の立ち上がりエッジで、積分器の出力は0にリセットされます。レベルリセット(リセットフラグ=1)の場合、制御信号を High(1)にすると、積分器の出力は0にリセットされます。 内部リセット付き積分器は出力が下限値か上限値のどちらかに達するとき、出力が0にリセットされま

す。これは、エッジリセット付き外部積分器と同じ動作をしますがこの場合外部のリセット回路を設定す る必要はありません。

積分結果が過大にならないように、積分器の出力にはリミッタを接続する必要があります。また、PSIM の仕様として、積分器とリミッタを接続したとき、リミッタの出力だけでなく、積分器の出力自体もリミ ットされます。ご注意ください。(下図参照)PI 制御器も同様の仕様になっています。

例

リセット付き積分器の使用例を以下に示します。

上の図で、積分器の入力は直流です。積分器の制御信号にパルス波形を入力し、積分器の出力を各サイクルの終わりにリセットしています。

5.1.3 微分器 (Differentiator)

微分器の伝達関数は以下になります。

$$G(s) = sT$$

微分は以下のように計算しています。

$$v_o(t) = T \cdot \frac{v_{in}(t) - v_{in}(t - \Delta t)}{\Delta t}$$

ここで、 Δt はシミュレーションタイムステップ、 $v_{in}(t) \ge v_{in}(t-\Delta t)$ はそれぞれ現在時刻の入力と1ステップ前の入力です。

٤.	۰.,	12.0
ン	2	ハル

2 2 11.75	
	⇒ st ->
仕様	
パラメータ	機 能
時定数	

入力が急変すると出力がスパイク状になるので、微分器の前にローパスフィルタを置くことをお勧めします。

5.1.4 比例積分(PI)制御器 (Proportional-Integral Controller)

比例積分(PI)制御器は以下のように定義されます。

シンボル

-	
	↔ PI →
仕様	
パラメータ	機能
ゲイン	伝達関数のゲインK
時定数	PI 制御器の時定数 T(sec)

比例積分(PI)制御器の伝達関数は以下の通りです。

 $G(s) = k \cdot \frac{1 + sT}{sT}$

振幅|G|と位相*Φ*のボード線図は以下の通りです。

積分結果が過大になるのを防ぐために、PI制御器のあとに必ずリミッタを使用してください。

5.1.5 単極制御器 (Single-Pole Controller)

単極制御器は一つの極を持つ比例制御器です。 シンボル

↔F~_~

仕様

パラメータ	機能
ゲイン	伝達関数のゲインK
極周波数	極の周波数 fc (Hz)
光ちゃに法明教はいての	

単極の伝達関数は以下の通り定義されます。

$$G(s) = k \cdot \frac{\omega_c}{s + \omega_c}$$

ここで $\omega_c=2\pi f_c$ です。 振幅|G|と位相 Φ のボード線図は以下の図の通りです。 $|G| = \frac{|G|}{\alpha_c} -20 dB/dec} \omega \text{ (rad/sec)}$

5.1.6 二極比例積分(PI)制御器 (Modified PI controller)

 Φ_0

-90°

ニ極比例積分制御器(modified PI controller)は極を持った PI で構成されています。

パラメータ	機能	
ゲイン	伝達関数のゲインK	
時定数	PI 制御器の時定数 T(sec)	
極周波数	極の周波数 f _c (Hz)	

 ω

この伝達関数は以下の通り定義されます。

$$G(s) = k \cdot \frac{1 + sT}{sT} \cdot \frac{1}{1 + sT_c}$$

ここで $T_c=1/\omega_c$ 、 $\omega_c=2\pi f_c$ です。

5.1.7 Type-3 制御器(Type-3 Controller)

Type-3制御器は2つの零点と2つの極で構成されています。

シンボル

L	L+#	
١.	ロケ	

パラメータ	機能
ゲイン	PI 制御器のゲイン K
周波数 fz1	1 つ目の零点の周波数 f _{z1} (Hz)
周波数 fz2	2 つ目の零点の周波数 fz2(Hz)
周波数 fp1	1 つ目の極の周波数 fp1(Hz)
周波数 fp2	2 つ目の極の周波数 f _{p2} (Hz)

この伝達関数は以下の通り定義されます。

$$G(s) = k \cdot \frac{1 + sT_{z1}}{sT_{z1}} \cdot \frac{1 + sT_{z2}}{(1 + sT_{p1}) \cdot (1 + sT_{p2})}$$

ここで

$$T_{z1} = \frac{1}{2\pi f_{z1}}, \quad T_{z2} = \frac{1}{2\pi f_{z2}}, \quad T_{p1} = \frac{1}{2\pi f_{p1}}, \quad T_{p2} = \frac{1}{2\pi f_{p2}} \ \text{et}.$$

振幅|G|と位相 Φ のボード線図は以下の図の通りです。

5.1.8 組み込みフィルタ・ブロック (Built-in Filter Blocks)

PSIMには次の4つの二次フィルタと1つの一次フィルタがあります。

シンボル

2nd-order low-pass	2nd-order high-pass	2nd-order band-pass	2nd-order band-stop	1st-order low-pass
~	↔[7	→ <u>br</u> -	⊶[<u>الا</u> ألا	

仕様(二次フィルタ)

パラメータ	機能
ゲイン	伝達関数のゲイン K
減衰比	減衰係数 ξ (減衰比)
遮断周波数	ローパスおよびハイパス・フィルタの遮断周波数(fc = ωc/2π, Hz)
中心周波数	バンドパスおよびバンドストップ・フィルタの中心周波数(f₀ = ω₀/2π, Hz)
バンド幅	バンドパスおよびバンドストップ・フィルタの周波数バンド幅(fь = B/2π, Hz)

仕様(一次フィルタ)

パラメータ	機能
ゲイン	伝達関数のゲイン K
遮断周波数	ローパスフィルタの遮断周波数(fc=ωc/2π, Hz)

これらの伝達関数は以下の通りです。

二次ローパスフィルタ

$$G(s) = k \cdot \frac{\omega_c^2}{s^2 + 2\xi\omega_c s + \omega_c^2}$$

二次ハイパス・フィルタ

$$G(s) = k \cdot \frac{s^2}{s^2 + 2\xi \omega_c s + \omega_c^2}$$

二次バンドパス・フィルタ

$$G(s) = k \cdot \frac{B \cdot s}{s^2 + B \cdot s + \omega_c^2}$$

二次バンドストップ・フィルタ

$$G(s) = k \cdot \frac{s^2 + \omega_o^2}{s^2 + B \cdot s + \omega_o^2}$$

一次ローパスフィルタ

$$G(s) = k \cdot \frac{\omega_c}{s + \omega_c}$$

数値演算関数ブロック (Computational Function Blocks) 5.2

5.2.1 加算器(Summer)

1 入力加算器(SUM1)または 2 入力加算器(SUM2 および SUM2P)の入力はスカラーでもベクトルでも可 能です。3入力の加算器はスカラー入力のみです。 シンボル

パラメータ 機 能 ゲインi i 番目の入力のゲイン k_i

3入力加算器(SUM3)では、ドット印の付いた入力が最初の入力となります。 入力がスカラーの場合は、n入力加算器の出力は次のようになります。

$$V_o = k_1 V_1 + k_2 V_2 + \ldots + k_n V_v$$

入力をベクトルにする場合は2入力加算器の出力も同じくベクトルになります。 以下に定義式を示します。

$$V_1 = [a_1 \ a_2 \ \dots \ a_n] \\ V_2 = [b_1 \ b_2 \ \dots \ b_n]$$

 $V_0 = V_1 + V_2 = [a_1 + b_1 \quad a_2 + b_2 \quad \dots \quad a_n + b_n]$

1入力の加算器では入力がベクトルでも出力はスカラーになります。この場合、スカラー出力は入力のベ クトル要素をすべて足したものです。すなわち、以下のようになります。

$$V_0 = a_1 + a_2 \dots + a_n$$

5.2.2 乗算器と除算器 (Multiplier and Divider)

乗算器(Multiplier)と除算器(Divider)の出力はそれぞれ2つの入力の積および商です。 シンボル

除算器ではドット印のついた入力が被除数となります。

乗算器の入力はベクトルでもスカラーでも可能です。2入力ともベクトルの場合、ベクトルの次元は同じ でなければなりません。

たとえば、入力を以下のようにした場合、

$$V_1 = [a_1 \ a_2 \ \dots \ a_n]$$

 $V_2 = [b_1 \ b_2 \ \dots \ b_n]$
スカラーの出力は、以下のようになります。

$$V_0 = V_1 * V_2^T = a_1 * b_1 + a_2 * b_2 + \ldots + a_n * b_n$$

5.2.3 平方根ブロック(Square-Root Block)

入力の平方根を計算します。

シンボル

5.2.4 指数/累乗/対数ブロック (Exponential/ Power/ Logarithmic Function Blocks)

指数(EXP)、累乗(POWER)、および対数(LOG)の計算をおこないます。

シンボル

EXP	POWER	LOG	LOG10
⊶a ^x ⊸	⊶ x ^a ⊸	⊶log⊸	⊶ ^{log} ⊸

パラメータ	機能
係数 k1	係数 k1
係数 k ₂	係数 k ₂

指数関数ブロック(EXP)は、出力を次のように計算します。

$$V_o = k_1 \cdot k_2^{V_{in}}$$

たとえば、 k₁ = 1、 k₂ =2.718281828、 および V_{in} = 2.5 とすると、 出力は V₀ =e^{2.5} となります(e は自然対数の基数)。

累乗ブロック(POWER)は出力を以下で計算します。

$$V_o = k_1 \cdot V_{in}^{k_2}$$

LOG ブロックは入力の自然対数を、LOG10 ブロックは常用対数を出力します。

5.2.5 二乗平均平方根ブロック (Root-Mean-Square Block)

二乗平均平方根ブロックは、指定された基本周波数(fb)により入力の二乗平均平方根を計算します。 出力は次のようになります。

$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v_{in}^2(t) dt}$$

ここで、 T = 1/f_b。

出力は各周期の始めにのみ更新されます。

シンボル

→ rms →

仕様

パラメータ	機能
基本周波数	基本周波数 f _b (Hz)

5.2.6 絶対値ブロック、符号関数ブロック (Absolute and Sign Function Blocks)

絶対値ブロック(ABS)は入力の絶対値を出力します。符号関数ブロック(SIGN)は入力の符号を出力しま す。たとえば、入力が正のときに出力は1、入力が負のときに出力は-1です。

シンボル

Absolute	Sign	
	↔ Sign →	

5.2.7 三角関数ブロック (Trigonometric Functions)

正弦(sin)、余弦(cos)、逆正弦(sin⁻¹)、逆余弦(cos⁻¹)、正接(tan)、逆正接(tg⁻¹)、および逆正接 2(atan2)といった三角関数が提供されます。

出力は入力にそれぞれ対応する三角関数値となります。sin,cos,tan の各ブロックの入力として度数法 (deg)、弧度法(rad)もしくは比率(360°=1)を用いることができ、arcsin, arccos, arctangentの各ブロックに 出力として度数法、弧度法もしくは比率を用いることができます。

シンボル

ブロックに入力端子に"r"を持つものは、弧度法入力と解釈されます。同様に"u"を持つ場合、比率入力と 解釈されます。表記が無いものは度数法入力となります。

tg⁻¹と atan2 では x が付与された端子を実数値入力、y が付与された端子を虚数値入力として解釈されます。出力端子に"u"が付与されている場合、比率として出力されます。

tg⁻¹と atan2の出力は、虚数値 y と実数値 x の比の逆正接となります。

$$\theta = tg^{-1}\left(\frac{y}{x}\right)$$

tg⁻¹の出力は、0°から 360°までの度数法が用いられます。一方、atan2の出力は- π から+ π までの弧度法が用いられます。

atan2はC言語の標準算術関数のatan2(y,x)と同じ挙動をとります。

5.2.8 高速フーリエ変換ブロック (FFT Fourier Transform Block)

高速フーリエ変換(FFT)ブロックにより、入力信号の基本波成分を計算できます。

FFT の演算アルゴリズムは、radix-2/decimation-in-Frequency 方法によります。

基本周期の1周期間のサンプリング数は2^N (Nは自然数)となるようにします。サンプリング数の上限は 1024 です。

FFT ブロックの出力は入力の基本波の振幅(最大値)と位相角です。出力は以下の式で計算しています。

$$v_{o} = \frac{2}{N} \cdot \sum_{n=0}^{n=\frac{N}{2}-1} \left(\left[v_{in}(n) - v_{in}\left(n + \frac{N}{2}\right) \right] \cdot e^{-j\frac{2\pi n}{N}} \right)$$

シンボル

仕様

パラメータ	機能
サンプリング数	ー サンプリング数 N
基本波周波数	基本波周波数 f _b (Hz)

2つの出力のうち、ドットのついたものが振幅の値です。位相は内部で、 Vm sin ωt が 位相0になるように調整しています。

FFT ブロックは入力信号が DC、基本波、基本波の高調波(基本波周波数の整数倍の信号)を持つ場合のみ 正しく動作します。入力信号が基本波の整数倍ではない成分を持っている場合、FFT ブロックは正しい結 果を計算できません。

また、FFT ブロックは基本波成分を計算しますので、例えば入力信号が 60Hz(基本波)と 180Hz の成分を 持っている場合、パラメータ基本波周波数を 180 にすると正しい結果を計算できません。

例

以下の回路で、入力電圧 Vin は基本波 V1 (100V, 60Hz)、5 次高調波 V5、(25V, 300Hz)、7 次高調波 V7 (25V, 420Hz)を含みます。1 サイクル後、FFT の出力は、振幅 100V の定常値となります。

5.2.9 最大/最小機能ブロック (Maximum/Minimum Function Block)

最大/最小機能ブロック(maximum/minimum function block)はそれぞれの入力で最も大きな値を持つもの、または小さな値をもつものの値を出力します。

シンボル

仕様	

L1X	
パラメータ	機能
入力数	入力数 N
関数タイプ	ブロックの関数型で、Maximum または Minimum を選択。

入力数Nはドロップダウンメニューで選択可能です。

5.3 その他の関数ブロック (Other Function Blocks)

5.3.1 比較器(Comparator)

正の入力が負の入力よりも大きくなると比較器は High の信号を出力します。正の信号が小さい場合、出力は0になります。2つの入力が等しい場合には、出力は不定となり、直前の値を保持します。 シンボル

比較器のシンボルはオペアンプのシンボルと似ているので注意してください。比較器では非反転入力は 左上で、反転入力が左下になります。オペアンプではこれが逆になります。

5.3.2 リミッタ(Limiters)

Lower/Upper リミッタ、Lower リミッタ、Upper リミッタ、Range リミッタの4種類のリミッタがあります。

シンボル

	Lower/upper Limiter	Lower Limiter	Upper Limiter	Range Limiter	
	°∛ _/ -∿	୶୷	ञै⊁−	⊶∓⊸	
仕様					
パラ	メータ		機能		

 下限
 リミッタの下限

 上限
 リミッタの上限

 Range リミッタ以外では、入力が指定範囲を越えるとリミッタ出力[※]は上下限に固定されます。入力が上

Range リミッタ以外では、入力が指定範囲を越えるとリミッタ出力**は上下限に固定されます。入力が上 下限の範囲内であれば、出力は入力と同じ値になります。 Range リミッタの出力は、上限と下限を超えたい範囲に制限されます。入力が上下限の範囲内であれば

Range リミツダの出力は、上限と下限を超えない範囲に制限されます。 人力か上下限の範囲内でめれは、
出力は入力と同じ値になります。出力が上限より高い場合、出力は範囲に収まるまで Vrange (= Vupper- Vlower)
の値が引かれます。出力が下限より低い場合、範囲に収まるまで V _{range} の値が加算されます。
※注意: PI素子,積分素子,フィルタ素子の出力にリミッタ素子を接続した場合,リミッタ素子の入力が
指定範囲を超えるとリミッタ出力は上下限に固定されるだけでなく、リミッタ素子の入力、すなわち素子
等の出力も上下限に固定されます。

5.3.3 微分(dv/dt)リミッタ (Gradient (dv/dt) Limiter)

微分リミッタは入力の変化率(dv/dt)を制限します。変化率が上下限の範囲内の場合、出力は入力と同じです。

シンボル

|--|--|--|

仕様

パラメータ	機能
入力変化率の上限(dv/dt)	入力変化率の上限(dv/dt)

5.3.4 台形および方形波ブロック (Trapezoidal and Square Blocks)

台形波形ブロック(LKUP_TZ)および方形波ブロック(LKUP_SQ)はルックアップテーブルの特殊なものです。入力と出力の関係は台形もしくは方形の波形となります。

シンボル

LKUP_TZ	LKUP_SQ	
⊶───	⊶ <u></u> _	

台形波ブロックの仕様は以下のとおりです。

仕様

パラメータ	機能
立ち上がり角度 θ	立ち上がり角度 θ(度)
ピーク値	波形のピーク値 Vpk

方形波ブロックの仕様は以下のとおりです。

仕様

パラメータ	機能
パルス幅(°)	半周期内おける出力パルス幅(度)

これらのブロックの波形を以下に示します。ここで、入力 v_{in} は角度(°)で、-360°から 360°の間でとることができます。いずれの波形も半波および 1/4 波で対称です。

5.3.5 サンプル・ホールド・ブロック (Sample/Hold Block)

サンプル・ホールド・ブロックは、制御信号が Low から High に(0 から1に)変わったときに、入力をサンプルし、 次のサンプリングまで値を保持します。

シンボル

シンボルの下のノードが制御信号です。

ゼロ次ホールド・ブロック(ZOH)と違って、このブロックは連続要素として扱われ、サンプリングを外部 信号で制御することができます。一方、ゼロ次ホールドブロックでは離散要素で、サンプリングは固定か つ等間隔となります。

離散系にはゼロ次ホールドブロックを使って下さい。

例

以下の例では、正弦波をサンプリングします。制御信号には振幅1の方形波を使っています。

5.3.6 丸め関数ブロック (Round-Off Block)

丸め関数ブロックのシンボルを以下に示します。

シンボル

仕様

パラメータ	機能
桁数	小数点以下の桁数 N
切り捨てフラグ	切り捨てフラグ(1: 切り捨て; 0: 四捨五入)
上は明光ゴー、トのコーナン	

丸め関数ブロックの入力を Vin とすると、入力はまず、以下の式で変換されます。

$$V_{in.new} = V_{in} \cdot 10^N$$

切り捨てフラグが1のとき、まず Vin, new を切り捨て、これを10^Nで割ったものを出力とします。そうでない場合は、Vin, new に最も近い整数に等しいとおき、これを10^Nで割ったものを出力とします。

例

Vin = 34.5678; N = 0, 切り捨てフラグ = 0 のとき、出力は Vout= 35. Vin = 34.5678; N = 0, 切り捨てフラグ = 1 のとき、出力は Vout= 34. Vin = 34.5678; N = 1, 切り捨てフラグ = 1 のとき、出力は Vout= 34.5. Vin = 34.5678; N = -1, 切り捨てフラグ = 1 のとき、出力は Vout= 30.

5.3.7 時間遅れブロック(Time Delay blocks)

指定時間を遅らせる時間遅れブロック(Time delay block)と、1 タイムステップだけ遅らせる単位時間遅 れブロック(Unit time delay block)の計2種類の時間遅れブロックがあります。

シンボル

	Time Delay	Unit Time Delay	
	↔ <u>_</u>	↔ LIII_ →	
仕様]
パラメータ		機 能	

| 時間遅れ | 時間遅れ(sec)※Time Delay ブロックのみ 時間遅れブロックは指定の時間間隔分入力信号を遅らせます。入力信号はアナログとロジックが使えま

す。例えば、論理素子の伝搬遅れをモデリングすることができます。 単位時間遅れブロックは1タイムステップ分入力信号を遅らせます。シミュレーションのタイムステッ プが変更された場合、遅れ時間もこれに従って変更されます。

単位時間遅れブロック(Unit time delay block)と Digital Control Module の単位遅れブロック(Unit delay block)の違いは、こちらが連続要素で遅れ時間が1タイムステップなのに対し、単位遅れブロックは離散的な要素であり遅れ時間はサンプリング周期と同じになる点です。

5.3.8 マルチプレクサ (Multiplexer)

マルチプレクサの出力は制御信号により選択された入力の値となります。2 つのタイプのマルチプレク サが提供されています。一つは、バイナリ制御入力、もう一つは個別制御入力です。

シンボル

シンボル図で、d0...d7 はデータ入力であり、s0...s2 は制御入力です。マルチプレクサの真理値表は以下のとおりです。

バイナリ制御の入力値

2 J		
s0	Y	
0	d0	
1	d1	

4入力		
s0	Y	s2
0	d0	0
1	d1	0
0	d2	0
1	d3	0
		1
		1

8 入力					
s2	s1	s0	Y		
0	0	0	d0		
0	0	1	d1		
0	1	0	d2		
0	1	1	d3		
1	0	0	d4		
1	0	1	d5		
1	1	0	d6		
1	1	1	d7		

個別の制御入力値

	3入力			4 J	、 力		
s1	s0	Y		s2	s1	s0	Y
х	1	d0		х	х	1	d0
1	0	d1		х	1	0	d1
その	の他	d2		1	0	0	d2
			-		その他		d3

X: Do not care

データ入力は、アナログでもデジタルでも、どちらでも構いません。

例

以下の回路は2入力のうち最大の値を選択します。入力 Va が Vb よりも大きいときは比較器の出力が 1となって、Vo=Vaとなり、そうでない場合は、Vo=Vbとなります。

5.3.9 高調波歪みブロック (THD Block)

基本波成分と高調波成分を含む交流波形で、高調波ひずみは以下の式で計算できます。

$$THD = \frac{V_h}{V_1} = \frac{\sqrt{V_{rms}^2 - V_1^2}}{V_1}$$

ここで、V1は基本波成分(rms)、Vhは高調波成分(rms)、またVmsは交流波形の全体の実効値です。PSIMでは高調波ブロックは以下のようにモデル化されています。

シンボル

THD は基本波を取り出すのに二次のバンドパス・フィルタを使っているので、中心周波数とバンド幅を 指定する必要があります。

仕様

パラメータ	機能
基本波周波数	入力の基本波周波数(Hz)
バンド幅	バンドパス・フィルタのバンド幅(Hz)

例

以下に示す単相のサイリスタ回路では、高調波歪み(THD)ブロックを使って入力の高調波歪みを測定しています。サイリスタブリッジの位相遅れは 30°とします。 また、THD ブロックの基本周波数は 60Hz、バンドパス・フィルタのバンド幅は 20Hz としています。シミュレーション結果を回路図の右に示します。

THD ブロックの出力の一方は入力電流の基本波成分 is1 です。入力電圧 vs と電流 is1 の位相を比べることにより、入力の等価力率を計算することができます。 この値を高調波の値(THD)と組み合わせることにより、入力の力率を求めることができます。

5.3.10 空間ベクトル PWM ブロック(Space Vector PWM)

空間ベクトル PWM ブロックは、キャリア波形を基にした PWM 生成方式で使用されます。これは、3 相入力信号を変換し空間ベクトル PWM の指令値を生成します。

ブロックに三相の信号が入力されると、出力の波形は以下のようになります。

このブロックの出力は、基本的に入力の 1.155 倍した値になります。

5.3.11 空間ベクトル PWM ブロック(alpha/beta) (Space Vector PWM(alpha/beta))

空間ベクトル PWM ブロック(alpha/beta)は、キャリア波形を基にした PWM 生成方式で使用されます。 これは、2 相 alpha/beta 入力信号を変換し空間ベクトル PWM の指令値を生成します。

ブロック入力に 90 度の位相差がある 2 つの正弦波信号 alpha/beta を入力すると、出力波形は以下のようになります。

このブロックの出力は、基本的に入力の 1.155 倍した値になります。

5.4 デジタル素子 (Logic Components)

5.4.1 論理ゲート (Logic Gates)

基本論理ゲートには AND、OR、XORGATE(exclusive OR)、NOT、NAND および NOR があります。 シンボル

5.4.2 セット・リセット・フリップフロップ (Set-Reset Flip-Flop)

セット・リセット・フリップフロップにはエッジ・トリガとレベル・トリガの2種類があります。 シンボル

~	s	Q	þ
~	R	Q	ŀ

仕様

 パラメータ
 機能

 トリガフラグ
 トリガフラグ(0:エッジトリガ;1:レベルトリガ)

エッジトリガフリップフロップは立ち上がりのときのみ状態が変わります。エッジトリガフリップフロ ップの真理値表を以下に示します。

S	R	Q	Q
0	0	<u></u>	変
0	↑	0	1
↑ (0	1	0
1	1	不住	使用

ー方、レベルトリガフリップフロップは入力レベルにより状態が変わります。レベルトリガフリップフ ロップの真理値表を以下に示します。

セットリセットフリップフロップの真理値表を以下に示します。

S	R	Q	Q
0	0	不	変
0	1	0	1
1	0	1	0
1	1	ጥ	吏用

5.4.3 J-K フリップフロップ (J-K Flip-Flop)

セット/リセット入力が無いタイプと有るタイプの2種類のJ-Kフリップフロップが用意されています。 前者の場合、セット/リセット入力ともに high(1)が入力されていると仮定します。 シンボル

J-K フリップフロップはクロック入力の立ち上がりでトリガされます。 J-K フリップフロップの真理値表を以下に示します。

S	R	J	К	Clock	Q	Q
0	1	х	х	х	1	0
1	0	х	х	x	0	1
0	0	х	х	х	0	0
1	1	0	0	1	不	変
1	1	0	1	1	0	1
1	1	1	0	1	1	0
1	1	1	1	↑	トク	ブル

X : Do not care

5.4.4 Dフリップフロップ (D Flip-Flops)

セット/リセット入力が無いタイプと有るタイプの2種類のDフリップフロップが用意されています。前 者の場合、セット/リセット入力ともに high(1)が入力されていると仮定します。 シンボル

Dフリップフロップはクロック入力の立ち上がりでトリガされます。

Dフリップフロップの真理値表を以下に示します。

S	R	D	クロック	Q	Q
0	1	x	х	1	0
1	0	x	x	0	1
0	0	x	х	0	0
1	1	0	↑	0	1
1	1	1	↑	1	0

5.4.5 単安定マルチバイブレータ (Monostable Multivibrator)

単安定マルチバイブレータは入力信号の立ち上がり(または立ち下がり)でトリガされます。マルチバイ ブレータにより、指定された幅のパルスを生成できます。

出カパルス幅は固定、または外部入力により可変です。可変出力マルチバイブレータは制御付きマルチ バイブレータ(MONOC)と呼び、固定出力型と区別します。パルス幅(sec)は制御入力により決まります。 シンボル

Monostable	Controlled Monostable	

仕様

パラメータ	機能
パルス幅	オン時間パルス幅(sec)

制御付きマルチバイブレータではシンボルの下側からの入力が制御信号になります。

5.4.6 パルス幅カウンタ (Pulse Width Counter)

パルス幅カウンタはパルスの幅を測ります。カウンタは入力の立ち上がり信号により起動します。入力 の立ち下がりを検出して、パルスの幅(sec)を測ります。次の立ち下がりを検出するまで、カウンタは前回 の値を保持します。

シンボル

5.4.7 Up/Down カウンタ(Up/Down Counter)

Up/down カウンタはクロックの立ち上がりエッジのたびに1を増加するか減少します。 シンボル

COUN Preset Enable Preset Value	TER PE PO
Clock	•-> -•
Up/Down Reset	⊶U/D ⊶R
仕様	

パラメータ	機 能	
ビット数	内部カウンタのビット数 N	

Up/Down の入力が 0 のとき、カウンタは減少します。Up/Down の入力が 1 の時、カウンタは増大しま す。

Reset 入力は High(1)のときカウンタを0 にリセットします。

Preset Enable 入力は High のときカウンタを予め設定された値にセットします。

以下はカウンタの真理表です。

Up/Down	Preset Enable	Reset	Clock	動作
x	0	0	x	カウントしない
1	0	0	↑	カウントアップ
0	0	0	↑	カウントダウン
x	1	0	x	プリセット
x	x	1	x	リセット

x: Do not care

5.4.8 A/D および D/A 変換器(A/D and D/A Converters)

A/D 変換器はアナログ入力信号をデジタルへ、また D/A 変換器はデジタル信号をアナログへ変換します。 8 ビットと 10 ビットの変換器があります。

ビット数をNとするとA/D変換器の出力は次の式で計算されます。

$$V_o = \frac{2^N}{V_{ref}} \cdot V_{in}$$

たとえば、Vref = 5V、Vin = 3.2V、N = 8bits とすると、Vo = 256/5*3.2 = 163.84 = 10100011(バイナリ)となります。

また、D/A 変換器の出力は以下の式で計算されます。

$$V_o = \frac{V_{ref}}{2^N} \cdot V_{in}$$

たとえば、 V_{ref} = 5V、 V_{in} = 10100011(バイナリ)、N =8bits とすると、V_o = 163/256*5 = 3.1836 V となります。

5.5 デジタル制御モジュール (Digital Control Module)

デジタル制御モジュールを標準の PSIM プログラムにアドオンとして追加することで、ゼロ次ホールド、 z 領域伝達関数、デジタルフィルタなどといったデジタル制御機能が利用可能になります。

連続時間のs領域回路に比べて z領域の回路は離散型です。したがって、計算は離散サンプル点でのみ行われ、サンプリングの間は計算が実行されません。

5.5.1 モータコントロールブロック(Motor Control Blocks)

ここで挙げる素子は、デジタル制御モータ駆動システム用のものです。これらのブロックは、TI デジタ ルモーターコントロール(DMC)ライブラリの対応した機能ブロックとして同様の機能を持っています。 詳細は SimCoderUserManual の 11 章を参照してください。

5.5.1.1 ランプ制御(Ramp Control)

本ブロックはステップ入力に対するランプ出力を提供します。

シ	ン	ボノ	L
---	---	----	---

仕様

1上17家	
パラメータ	機能
上限	単位あたりのランプ出力最大値。
下限	単位あたりのランプ出力最小値。
ステップ持続数	各ステップにおけるサンプル数 N。1 以上の整数である必要があります。
ステップサイズ	単位あたりの出力におけるランプステップの最大変化量。Vstep
サンプリング周波数	サンプリング周波数(Hz)

画像において、小ドットを伴った出力ノードはランプ出力であり、他方の出力ノードは出力が入力に等 しいことを示すフラグです。

入力が出力よりも大きい場合、出力は、N 個のサンプリング期間の持続時間の後、Vstep ごとに増加します。

入力が出力よりも小さい場合、出力は、N個のサンプリング期間の持続時間の後、Vstepごとに減少します。入力が出力に等しい場合、フラグは1に設定されます。それ以外の場合は0になります。

5.5.1.2 ランプ生成器(Ramp Generator)

本ブロックは入力に従ってランプ出力を生成します。

シンボル

Gain	\rightarrow
Offset	↔ // –•
Frequency	∽f

仕様	
パラメータ	機能
基本周波数	基本周波数 fb(Hz)。
サンプリング周波数	サンプリング周波数(Hz)

画像内の第一入力はゲインです。第二入力はオフセットです。第三入力は出力ランプのための所望の周 波数 freq です。

出力ランプ周波数は、入力値と基本周波数 fb の倍数です。出力範囲は-1 から 1 に制限されています。したがって、オフセットとゲインの範囲は"オフセット + ゲイン ≦ 1"に制限されます。

5.5.1.3 すべりモードオブザーバ(PMSM)(Sliding Mode Observer (PMSM))

本すべりモードオブザーバブロックの機能は、永久磁石同期モータ(PMSM)の回転子位置を推定することです。 本ブロックは、TI DMC ライブラリの SMOPOS ブロックと同じように動作します。

シンボル

v al theta —∘ ∘→be
al al - o be be - o

仕様

パラメータ	機能
基準電流	モータ基準相電流(A)
固定子抵抗	モータ固定子抵抗(Ohm)
固定子インダクタンス	モータ固定子インダクタンス(H)
ゲイン Kslide	すべりモード制御ゲイン
ゲイン Kslf	すべりモード制御フィルタゲイン
係数 E0	係数は誤差積分飽和量を制限します。デフォルト値は 0.5 です。
サンプリング周波数	サンプリング周波数(Hz)

5.5.1.4 速度演算器(Speed Calculator)

本ブロックは回転子角を元にモータの速度を演算します。

シンボル

仕様

パラメータ	機能	
基本周波数 fb	基本周波数(Hz)	
遮断周波数	ー次ローパスフィルタの遮断周波数(Hz)	
極数	モータ極数	
サンプリング周波数	サンプリング周波数(Hz)	

入力 theta は単位あたりのモータ回転子の電気角です。出力 Wr は単位あたりの推定モータ速度です。出力 rpm は rpm あたりの推定モータ速度です。一次ローパスフィルタは、出力値に適用されます。

5.5.1.5 エンコーダ

このブロックは ABZ 信号をもつエンコーダ機能です。

シンボル

م ې گ]
o⇒b Cnt o⇒z	-0
o⇒ Jtrobe	

仕様

パラメータ	機能
カウントの方向	カウントの方向(0:カウントアップ;1:カウントダウン)
Ζ信号の極性	Z 信号のトリガの極性(0:アクティブ High;1:アクティブ Low)
エンコーダの分解能	エンコーダの分解能。 0の場合はエンコーダカウンタは継続しリセットされません。 例えば分解能が 4096 の場合カウンタが 4095 になった後に 0 ヘリセットされ ます。
サンプリング周波数	サンプリング周波数(Hz)

エンコーダの出力値はカウンター値です。

5.5.2 ゼロ次ホールド (Zero-Order Hold)

ゼロ次ホールドは入力を指定された周期でサンプルを行い、次のサンプリング時刻まで出力の値を保持 します。

シ	ンボル	

	\rightarrow	ZOH —•	
仕様			
パラメータ			
サンプリング周波数	サンプリング周波数(H	lz)	

他のデジタル素子同様、ゼロ次ホールドは内部のタイマでサンプル時刻を決めます。したがって、サン プル時刻はシミュレーションの開始時刻と同期しています。たとえば、サンプリング周波数を 1000 Hz と 指定すると、サンプリングは 0, 1 msec, 2 msec, ... という具合に実行されます。

以下の回路ではサンプリング周波数を 1000 Hz としています。右の図に入力と出力の波形を示します。

上の回路では入力の正弦波に連続型の積分器が接続されています。このため、この回路は連続・離散混 合回路となり、連続系のシミュレーションタイムステップにより計算が行われます。こうしたシミュレー ションタイムステップにより、ゼロ次ホールド素子の出力は上に示すように階段状となります。

一方、この積分器がないと回路は離散型となります。計算はサンプル時刻でのみ実行されるので、シミ ュレーションタイムステップはサンプル周期と同じになり、計算結果はサンプル時刻でのみ得られます。 下の波形は一見、連続波形のように見えますが実は離散値で、サンプル点を結んだ線のみで構成されてい ます。

5.5.3 z 領域伝達関数ブロック (z-Domain Transfer Function Block)

z領域伝達関数ブロックは以下の多項式で示されます。

 $H(z) = \frac{b_0 \cdot z^N + b_1 \cdot z^{N-1} + ... + b_{N-1} \cdot z + b_N}{a_0 \cdot z^N + a_1 \cdot z^{N-1} + ... + a_{N-1} \cdot z + a_N}$ ここで、ao = 1 のとき、Y(z) = H(z) * U(z) は、以下のように別の式で表現できます。 $y(n) = b_0 \cdot u(n) + b_1 \cdot u(n-1) + ... + b_N \cdot u(n-N) - [a_1 \cdot y(n-1) + a_2 \cdot y(n-2) + ... + a_N \cdot y(n-N)]$

シンボル

仕様

パラメータ	機能	
次数 N	伝達関数の次元 N	
係数 <i>b</i> ₀,, <i>b</i> ℕ	分子の多項式の係数	
係数 a₀,, aℕ	分母の多項式の係数	
サンプリング周波数	サンプリング周波数(Hz)	

例

以下は二次の伝達関数です。

$$(z) = \frac{400.e^3}{2}$$

H(z)= <u>400.e³</u> z²+1200·z+400.e³ サンプリング周波数は 3kHz とします。PSIM では、以下のように指定します。

次数 N	2
係数 <i>b</i> o, …, <i>b</i> N	0, 0, 400k
係数 a₀,, aℕ	1, 1200, 400k
サンプリング周波数	3000

5.5.3.1 積分器(離散型)(Integrator)

積分器(Integrator)には3種類あります。通常の積分器、外部リセット機能付き積分器、内部リセット機能付き積分器です。 シンボル

仕様

パラメータ	機能	
アルゴリズムフラグ	積分アルゴリズムの切替フラグ 0: 台形法 1: 後退オイラー法 2: 前進オイラー法	
出力の初期値	出力の初期値	
リセットフラグ	リセットフラグ(0:エッジリセット; 1:レベルリセット) (リセット付き外部積分器のみ)	
出力の下限値	出力の下限値(内部リセット付き積分器のみ)	
出力の上限値	出力の上限値(内部リセット付き積分器のみ)	
サンプリング周波数	サンプリング周波数(Hz)	

外部リセット付き積分器の出力は制御信号によりリセットすることができます。エッジリセット(リセットフラグ=0)の場合、制御信号の立ち上がりエッジで、積分器の出力は0にリセットされます。レベルリセット(リセットフラグ=1)の場合、制御信号を High(1)にすると、積分器の出力は0にリセットされます。

内部リセット付き積分器の出力は出力の値によりリセットされます。出力値が下限値か上限値のどちらかに達した場合に、出力を0にリセットされます。リセット動作は、外部エッジリセット付き積分器と同同様ですが、内部リセット付き積分器では外部のリセット回路を設定する必要はありません。

入力を u(*t*)、出力を y(*t*)、サンプリング周期を T、 離散型伝達関数を H(*z*) とすると、積分器の入出力関係は以下のように表現できます。

台形法

$$H(z) = \frac{T}{2} \cdot \frac{z+1}{z-1}$$
$$y(n) = y(n-1) + \frac{T}{2} \cdot (u(n) - u(n-1))$$

後退オイラー法

$$H(z) = T \cdot \frac{z}{z-1}$$
$$y(n) = y(n-1) + T \cdot u(n)$$

前進オイラー法

$$H(z) = T \cdot \frac{1}{z-1}$$
$$y(n) = y(n-1) + T \cdot u(n-1)$$

5.5.3.2 微分器(離散型)(Differentiator)

離散型微分器(Differentiator)の伝達関数を以下に示します。

$$H(z) = \frac{1}{T_s} \cdot \frac{z - 1}{z}$$

ここで、Tはサンプリング周期です。

入出力関係は差分方程式を使って、次のように表すこともできます。

$$y(n) = \frac{1}{T_s} \cdot (u(n) - u(n-1))$$

シンボル

4	Dz	— •

仕様

パラメータ	機能	
サンプリング周波数	サンプリング周波数(Hz)	

5.5.3.3 デジタル PI コントローラ(Digital PI Controller)

デジタル PI コントローラは、以下のように定義されています。

シンボル

$$\rightarrow$$
 PI ^z \rightarrow

仕様

パラメータ	機能
ゲイン	PI コントローラのゲイン k
時定数	PIコントローラの時間定数 T
出力の下限値	出力の下限 V_lower
出力の上限値	出力の上限 V_upper
サンプリング周波数	サンプリング周波数 fs (Hz)

s 領域におけるアナログ PI コントローラの伝達関数は、以下のように定義されています。

$$G(s) = k \cdot \frac{1 + sT}{sT}$$

デジタル PI コントローラは、後退オイラー法を用いてアナログ PI コントローラを離散化することによ り得られます。コントローラの実装例を、以下に示します。

5.5.3.4 リセット付きデジタル PID 制御器(Digital PID Controller with Reset)

リセット付きデジタル PID 制御器は以下のように定義されます。ゲイン設定により、本ブロックは PI もしくは PD 制御器として使用できます。

シンボル

Reset input $restriction restriction rest$		
仕様		
パラメータ	機能	
サンプリング周波数	サンプリング周波数(Hz)	
比例ゲイン	比例ループゲイン Kp	
積分ゲイン	積分ゲイン Ki	
微分ゲイン	微分ゲイン Kd	
積分補正ゲイン	積分補正ゲイン Kc	
飽和上限	出力上限値	
飽和下限	出力下限値	

画像中、入力"r"は、リセット信号のためのものです。他の入力は、指令値とフィードバック値の誤差で す。注意してください。入力リセット値が 0.5 より大きい場合、積分出力は 0 にクランプされます。この 機能は、フィードバック信号が使用可能になる前に積分器が飽和状態に入るのを防止するのに有用です。 PID 制御では、微分方程式は後退オイラー近似により差分方程式に変換されます。

従来のアンチワインドアップ修正付き PID コントローラのブロック図を以下に示します。

サンプリング周期をTsとすると、積分ゲインと微分ゲインは次のように定義されます。

$$K_i = \frac{T_s}{T_i}$$
$$K_d = \frac{T_d}{T_s}$$

5.5.3.5 デジタルフィルタ (Digital Filters)

ー次のローパスフィルタ、二次のローパスフィルタ、一般型のデジタルフィルタ、一般型の FIR フィルタの4種類のデジタルフィルタブロックが提供されています。

ー般型のフィルタについては、フィルタ係数をそれぞれの素子のプロパティウィンドウを介 して直接入力するか、あるいはテキストファイルを通して指定する必要があります。 シンボル

1st-order Low-Pass	2nd-order Low-Pass	General Digital Filter	FIR Filter
↔ Z →	↔	↔ H(z) →	\leftrightarrow FIR \rightarrow

仕様

ー次ローパスフィルタおよび二次ローパスフィルタの場合

パラメータ	機能
ゲイン	フィルタのゲイン k
遮断周波数	カットオフ周波数 fc (fc = ωd2π) (Hz)
減衰比	フィルタの減衰比(二次ローパス・フィルタのみ)
サンプリング周波数	サンプリング周波数(Hz)

伝達関数の係数を直接指定する一般型デジタルフィルタおよび FIR フィルタの場合

パラメータ	機能
次数 N	伝達関数の次元 N
係数 b ₀ ,, b _N	分子の多項式の係数
係数 a₀,, aℕ	分母の多項式の係数
サンプリング周波数	サンプリング周波数(Hz)

伝達関数の係数をを外部ファイルから読み込む、一般型デジタルフィルタおよび FIR フィルタの場合

パラメータ	機能
係数テーブルファイル	フィルタ係数が記載されているファイル名
サンプリング周波数	サンプリング周波数(Hz)

ローパスフィルタの伝達関数は以下の通りです。

s領域における一次ローパスフィルタの場合

$$G(s) = k \frac{\omega_{\rm c}}{s + \omega_{\rm c}}$$

s領域における二次ローパスフィルタの場合

$$G(s) = k \frac{\omega_{\rm c}^2}{s^2 + 2\zeta \omega_{\rm c} s + \omega_{\rm c}^2}$$

ー次と二次のデジタルフィルタは、後退オイラー法によってアナログフィルタを離散化することで得る ことが出来ます。

一般型デジタルフィルタの伝達関数を以下の多項式で示します。

$$H(z) = \frac{b_0 + b_1 \cdot z^{-1} + \dots + b_{N-1} \cdot z^{-(N-1)} + b_N \cdot z^{-N}}{a_0 + a_1 \cdot z^{-1} + \dots + a_{N-1} \cdot z^{-(N-1)} + a_N \cdot z^{-N}}$$

an =1 のときは、出力 y と入力 u は以下の差分形式を使って表わすこともできます。

 $y(n) = b_0 \cdot u(n) + b_1 \cdot u(n-1) + ... + b_N \cdot u(n-N) -$

$$\left[a_{1} \cdot y(n-1) + a_{2} \cdot y(n-2) + ... + a_{N} \cdot y(n-N)\right]$$

伝達関数の分母の係数が 0 でない場合、このタイプのフィルタは無限インパルス応答(Infinite Impulse Response = IIR)フィルタと呼ばれます。
一方、FIR フィルタの伝達関数は以下の多項式で表わすことができます。 $H(z) = b_0 + b_1 \cdot z^{-1} + ... + b_{N-1} \cdot z^{-(N-1)} + b_N \cdot z^{-N}$ an =1 のときは、出力 y と入力 u は以下の差分形式を使って次のように表わせます。 $y(n) = b_0 \cdot u(n) + b_1 \cdot u(n-1) + ... + b_N \cdot u(n-N)$ 係数格納ファイルの仕様は以下のとおりです。 FIR フィルタ(外部ファイル)の場合 Ν b_0 b1 bN デジタルフィルタ(外部ファイル)の場合 Ν または Ν b_0 **b**0, **a**0 b1 b1, a1 b_N, a_N bΝ **a**0 a₁ a_N 例 ここでは例として二次の Butterworth 型ローパスデジタル・フィルタを設計します。 遮断周波数 fc =1kHz、サンプリング周波数 fs = 10kHz として、MATLAB^{*} で計算すると ナイキスト 周波数は fn = fs/2 =5 kHz 正規化遮断周波数は fc* = fc/fn = 0.2 [B,A] = butter (2, fc*) となり、 $B = [0.0201 \ 0.0402 \ 0.0201] = [b_0 \ b_1 \ b_2]$ $A = [1 - 1.561 \ 0.6414] = [a_0 \ a_1 \ a_2]$ を得ます。 したがって、伝達関数は、 $H(z) = \frac{0.0201 + 0.0402 \cdot z^{-1} + 0.0201 \cdot z^{-2}}{1 - 1.561 \cdot z^{-1} + 0.6414 \cdot z^{-2}}$

入出力差分式は、

y(n) = 0.0201·u(n) + 0.0402·u(n - 1) + 1.561·y(n - 1) - 0.6414·y(n - 2) PSIM では、パラメータを以下のように指定します。

次数 N	2
係数 <i>b</i> ₀,, <i>b</i> ℕ	0.0201 0.0402 0.0201
係数 a₀,, aℕ	11.561 0.6414
サンプリング周波数	10000.

係数をファイルに保存する場合、そのファイルの書式は以下のようになります。 2 0.0201 0.0402 0.0201 1. -1.561 0.6414 また、以下のような記述も可能です。 2 0.0201, 1 0.0201, 0.6414

5.5.4 単位遅れブロック(Unit Delay)

単位遅れブロック(Unit delay)は入力信号を1サンプリング周期だけ遅らせます。 シンボル

仕様

パラメータ	機能
出力の初期値	ブロックの出力の初期値
サンプリング周波数	サンプリング周波数(Hz)

離散素子の単位遅れブロックが標本化信号を1サンプル時刻だけ遅らせるのに対して、連続素子の時間 遅れブロック(TDELAY)は波形全体を指定時間だけ遅らせます。

5.5.5 離散化ブロック (Quantization Blocks)

離散化ブロック(Quantization block)は A/D 変換プロセスの離散化誤差を模擬するのに使います。 1LSB(least significant bit、最下位ビット)の離散化誤差をもったものと、0.5LSBの入力オフセットをもった ものと、計2種類の離散化ブロックがあります。

シンホル			
	Quantization Block	Quantization Block (with offset)	

仕様

パラメータ	機能
ビット数	ビット数 N
入力下限 Vin_min	入力値の下限 Vin,min
入力上限 Vin_max	入力値の上限 Vin,max
出力下限 Vo_min	出力値の下限 Vo,min
出力上限 Vo_max	出力値の上限 V _{o,max}
サンプリング周波数	サンプリング周波数(Hz)

離散化ブロックの動作を理解するために、次のような例(N=3、V_{in,min}=0、V_{in,max}=1)を考えます。この入力 値は 2³(または 8 つ)のステージに分割されます。入力レベルに応じて、出力は 3-bit の離散値 000,001,010, 011,100,101,110,111 のいずれかを取ります。出力は 2³(または 8)のレベルと 2³-1(または 7)のステップ をもちます。2 進数の 000 が 10 進数の 0 に、2 進数の 111 が 10 進数の 0.875 に一致し、V_{in,min}=0、V_{in,max}=1 のとき、入力と出力の波形をプロットすることができます。

また、2つの離散化ブロックの離散化誤差 Vin-Voは以下のようになります。 左の波形はオフセットなしの離散化ブロックのもので、右の波形はオフセット付きの離散化ブロックの 波形です。

左の波形に示すように、離散化ブロックの離散化誤差は 0~1LSB、または 1/2³(または 0.125)となりま す。オフセット付きの離散化ブロックでは、離散化される前に 0.5*LSB の値が入力に付加されます。これ は右の波形に見られるように、離散化誤差を-0.5LSB から+0.5LSB まで減らします(入力が最大値に近い場 合を除く)。

ビット数は出力の分解能を決定します。入力幅 Vin,max-Vin,min は 2^Nステージに分割されます。各ステージの幅は以下のように表されます。

$$\Delta V_{in} = \frac{V_{in,\max} - V_{in,\min}}{2^N}$$

ただし、1つ目のステージの幅は 0.5* // Vin となり、最後のステージは 1.5* // Vin となります。オフセット なしの離散化ブロックでは、1 つ目のステージと最後のステージでその幅が // Vin となることにご注意くだ さい。 入力が k 番目のステージで減少した場合、出力は次のように計算されます。

減少した場合、出力は次のように計算されます
$$V_o = V_{o,\min} + (k-1) \cdot \Delta V_o$$

ここで k は 1 から 2^Nの値をとり、出力ステップは以下の通り計算されます。

$$\Delta V_o = \frac{V_{o,\max} - V_{o,\min}}{2^N}$$

この値 Vo,max は入力が Vin,max の時に出力される値と一致します。しかし離散化によって、出力は N レベ ルで 0 から 2^N-1 の間の値で表されます。結果として、出力の実際の上限は上図で表される通り Vo,max では なく Vo,max-△Vo となります。

例

オフセット付きの離散化ブロックで N=3, Vin,min=0, Vin,max=1, Vo,min=0, Vo,max=1 とすると、 *△Vin= △* Vo=1/8 となります。

よって Vin=0.25 のとき、3 番目のステージ(k=3)で、 Vo=0+(3-1)*1/8=0.25 となります。

また、Vin=0.6のとき、6番目のステージ(k=6)で、V₀=0+(6-1)*1/8=0.625となります。

5.5.6 循環バッファ (Circular Buffers)

循環バッファ(Circular Buffer)はデータ配列を保存するメモリです。

シンボル

	↔ <u></u> 	↔ ⊃ ^F ⊸	↔ <mark>></mark> ∽
	Circular Buffer (vector output)	Circular Buffer (vector output - FIFO)	Circular Buffer (single output)
仕様			

パラメータ	機能		
バッファ長	バッファの長さ		
サンプリング周波数	サンプリング周波数(Hz)		

循環バッファは3種類あります。循環バッファ(ベクトル出力)はデータをバッファに格納し、ポインタが バッファの最後まで達したときには始めのメモリ位置に戻り、値を上書きします。出力はバッファの長さ と等しい長さのベクトル配列となります。循環バッファ(ベクトル出力-FIFO)は First In -First Out となるベ クトル出力のバッファで内部のデータ位置が順番にシフトしていきます。循環バッファ(単出力)はスカラ 一出力で押し出される値と等しい値を取ります。個別のメモリの内容を参照するには、メモリ読み出しブ ロック MEMREAD を使って下さい。

例

長さ4とサンプリング周波数 10Hz の循環バッファでは、サンプリング時刻によって、バッファの内容 は以下のように変化します。

時刻入力	3 -	メモリ位置による値				出力(単出力
	1	2	3	4	バッファ)	
0	0.11	0.11	0	0	0	0
0.1	0.22	0.11	0.22	0	0	0
0.2	0.33	0.11	0.22	0.33	0	0
0.3	0.44	0.11	0.22	0.33	0.44	0
0.4	0.55	0.55	0.22	0.33	0.44	0.11
0.5	0.66	0.55	0.66	0.33	0.44	0.22

・循環バッファ(ベクトル出力)および循環バッファ(単出力)の場合

・循環バッファ(ベクトル出力-FIFO)の場合

吐力	入力	メモリ位置による値			
时刻		1	2	3	4
0	0.11	0.11	0	0	0
0.1	0.22	0.22	0.11	0	0
0.2	0.33	0.33	0.22	0.11	0
0.3	0.44	0.44	0.33	0.22	0.11
0.4	0.55	0.55	0.44	0.33	0.22
0.5	0.66	0.66	0.55	0.44	0.33

5.5.7 畳み込みブロック (Convolution Block)

置み込みブロックは2つの入力ベクトルの畳み込み積分を実行します。出力もベクトル値です。 シンボル

CONV

2つの入力ベクトルを A = [am am-1 am-2 ... a1] B = [bn bn-1 bn-2 ... b1] とするとAとBの畳み込み積分は C = A ⊗ B = [Cm+n-1 C m+n-2 ... C1] ここで、 c_i = Σ [a_{k+1} *b_{j-k}], k = 0, ..., m+n-1; j = 0, ..., m+n-1; i = 1, ..., m+n-1

例

入力を A = [1 2 3] および B = [4 5] とすると、m=3, n=2 で、出力は C = [4 13 22 15] となります。

5.5.8 メモリ読み出しブロック (Memory Read Block)

メモリ読み出しブロックは、データ配列の指定された位置のメモリの内容を読みだします。

° <u> </u>	
⊶√→1]∟	
MEMREAD	
MEMDERD	

仕様

パラメータ	機能
オフセット	メモリの先頭位置からのオフセット距離

このブロックにより、ユーザは畳み込みブロック、ベクトル配列、循環バッファなどに対して、メモリ 位置を指定してアクセスできます。オフセットはメモリの先頭位置からの距離を示します。

例

ベクトル A = [2468] を考えると、オフセットが0のとき、メモリ読み出しブロックの出力は2。オフ セットが2のとき、出力は6になります。

5.5.9 データ配列 (Data Array)

これは一次元配列です。出力はベクトルとなります。データ入力は直接入力するもの(Array)とファイルにより指定するもの(Array(file))があります。

シンボル

[]

パラメータ	機能
配列長	データ配列 Nの長さ(Arrayのみ)
配列要素の値	配列要素の値(Array のみ)
配列テーブルファイル	データ配列を格納しているファイル名(Array (file)のみ)

あるファイルから配列が読み込まれる場合、そのファイルは以下のような形式です。

ここで、Nは配列の長さで、A1...AN は配列要素の値です。

例

配列 A = [2468] を定義するには、Array Length = 4; Values = 2468と指定します。あるファイルから 配列が読み込まれる場合、そのファイルは以下のような形式です。

4	
2	
4	
6	
8	

5.5.10 スタック (Stack)

スタックは first-in-last-out のレジスタです。

シンボル

ν _{in} push pop	$ \begin{array}{c} \searrow \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \downarrow \\ \rho \end{array} \end{array} \rightarrow V_o $
11 LAL	

仕様

IL TX	
パラメータ	機能
深さ	スタックの深さ

push または pop の操作を行うには立ち上がり信号を与えます。スタックが空のときに pop 操作をおこ なった場合は、出力は不変です。スタックが一杯のときに push 操作をおこなうと、スタックの一番下にあ るデータはレジスタから押し出されてなくなります。

5.5.11 多重サンプリングシステム (Multi-Rate Sampling System)

PSIM の離散系はサンプリング周期を複数持つことができます。以下に例を示します。 次のシステムは3つの部分に別れています。最初の部分システムはサンプリング周波数が10Hz です。 その出力 Vo はシステムのフィードバック信号として使っています。次の部分システムはサンプリング周 波数が4Hz です。3番目の部分システムは同じ信号を周波数2Hz でサンプリングして表示しています。

²つのサンプリング周波数が異なる素子の間にはゼロ次ホールドを使わなければなりません。

5.6 SimCoupler モジュール (SimCoupler Module)

SimCoupler は PSIM のアドオン・オプションで、PSIM と MATLAB/Simulink とのあいだのインターフェ ースを提供します。SimCoupler を使うことで、シミュレーションの一部は PSIM で、残りは Simulink で実 行することができます。 PSIM のパワー回路のシミュレーション機能をフルに活用しながら、 MATLAB/Simulinkの制御シミュレーション機能を補助的に使うことが可能です。

SimCoupler は PSIM の Link ノードと Simulink の SimCoupler ブロックからなります。以下にシンボルを示します。

PSIM 内では、SLINK_IN のノードが Simulink からの信号を受け取ります。また SLINK_OUT のノードか ら Simulink へ信号を送ります。これらはいずれも制御素子なので、PSIM の制御回路内でのみ使用可能で す。Simulink 内では、SimCoupler ブロックの入出力端子を経由して他の Simulink 内のシステムと接続する ことができます。

5.6.1 PSIM と Simulink での設定 (Set-up in PSIM and Simulink)

SimCoupler の使用法は簡単かつ明瞭です。以下の例は、永久磁石同期機(PMSM)の駆動システムで、パワー回路には PSIM を使い、制御回路は Simulink で構成しています。

以下にこの例題にもとづいて SimCoupler を使って PSIM と MATLAB/Simulinkの連成シミュレーション を構成する手順を説明します。

<u>SimulinkライブラリへSimCouplerブロックを追加</u>

[SetSimPath.exe]を起動し、Simcoupler ブロックを Simulink ライブラリへ追加します。

そして、PSIM と Matlab/Simulink の連成シミュレーションを行うために、Simcoupler モジュールを設定します。

[SetSimPath.exe]の実行後、Simulink ライブラリブラウザに、"S-function SimCoupler"として SimCoupler ブロックが追加されます。

このステップは必須であり、これを実行しないと Simulink は PSIM を認識できません。

これにより、MATLABのパスに手動で PSIM フォルダを加える必要はなくなります。

[SetSimPath.exe]は、一度だけ実行すれば十分です。

ただし、PSIM フォルダか MATLAB フォルダが変更された場合は、再度実行する必要があります。

<u>PSIM 側の操作</u>

- 1) パワー回路を構成したあと、ローパスフィルタを介した A,B,C 相の電流を 3 つの SLINK_OUT のノード に接続し、端子名を la, lb, lc と指定します。また速度センサの出力を同様に別の SLINK_OUT ノードに 接続し、Wrpm と名前を付けます。
- 2) 3 つの SLINK_IN の入力ノードを比較器の正の入力に接続し、それぞれ端子名を Va, Vb, Vc と指定しま す。
- 3) Simulate メニューから Arrange SLINK Nodes を選びます。ダイアログウィンドウが表示されるので、 SLINK_IN と SLINK_OUT の端子の並びが、Simulink の SimCoupler ブロックでの入出力の順番(上から

下)と同じになるように並び替えてください。この例では、SLINK_IN のノードは Va, Vb, Vc の順で、 SLINK_OUT のノードは Ia, Ib, Ic, Wrpm の順になります。

4) 回路図ファイルを保存します。この例では、ファイルは「C:\PSIM\pmsm_psim.sch」に保存されます。

<u>Simulink 側の操作</u>

- 1) MATLAB を起動します。
- Simulink を起動し、既存のファイルを開くか、新規ファイルを作成します。システムを作成した後、 Simulinkのライブラリブラウザのメニュー「S-function SimCoupler」に行き、SimCouplerのブロック を選択し回路図に置いてください。
- 3) PMSMファイルでは、SimCouplerブロックをダブルクリックしてから、Browserボタンをクリックして 「C:\PSIM\pmsm_psim.sch」というPSIMの回路図ファイルを選択してください。Applyをクリックする と、SimCouplerブロックの入出力の数はPSIMで作成したものと自動的に一致します。この例では3入 力・4出力になります。
- Simulation メニューから Simulation Parameters を選びます。Solver Options の項で、Type を Fixed Step に設定します。Fixed step size は PSIM のタイムステップと同じか、できる限り近い値に設定し てください。この例ではタイムステップは 0.1ms です。Solver Option とタイムステップの設定につい ての詳細は次節で述べます。
- 5) 設定が完了しました。Simulink でシミュレーションを開始します。

また、SimCoupler ブロックがフィードバックループの一部になるようなシステムでは、SimCoupler ブ ロックが代数ループ(algebraic Loop)の一部になってしまうことがあります(代数ループについてのより詳 細な情報は MATLAB のヘルプをご覧ください)。MATLAB/Simulink のバージョンによっては代数ループが 存在するシステムのシミュレーションができないことがあり、シミュレーションができる場合にもシミュ レーション速度が著しく低下することがあります。代数ループを「Break」するためには、SimCoupler ブ ロックの各出力端子に Memory ブロックを接続します。Memory ブロックは 1 積分ステップ分の時間遅れ を挿入します。

5.6.2 Simulink における Solver Type とタイムステップの設定(Solver Type and Time Step Selection in Simulink)

PSIM と MATLAB/Simulink で同時にシミュレーションをおこなう場合、Simulink では Solver Type とタ イムステップについていくつかの制約があります。このことを以下に示すチョッパ回路を例題に説明しま す。

左側の回路はすべて PSIM で構成し、右側の回路はパワー回路を PSIM で、制御回路を Simulink で構成 しています。いずれの回路も PSIM のシミュレーションタイムステップは 2µs です。

Simulink の設定はいくつか異なる方法があります。推奨の方法は Solver Type を **Fixed-step** に設定して、Fixed step size を PSIM のタイムステップと同じに指定することです。

Simulink のタイムステップは PSIM と同一であることを推奨しますが、Simulink の側のタイムステップ がわずかに PSIM のタイムステップよりも長い場合にも、充分な精度でシミュレーション結果が得られる ことがわかっています。上の例では、Simulink のタイムステップは PSIM よりも 10 倍も長い 20µs になっ ています。

しかし、Simulink の Solver Type を **Variable-step** に設定すると、シミュレーション結果は正しくなりません。下の図はこのような場合を示します。

Simulink の Solver Type を Variable-step に設定した場合は、正しい結果を得るには SimCoupler の入力 にゼロ次ホールドを使う必要があります。さらに、ゼロ次ホールドのサンプル時間は PSIM のタイムステ ップと同じに設定する必要があります。下の図にこのような構成を示します。

まとめとして、PSIM と MATLAB/Simulink で連成シミュレーションをおこなう場合は、Simulink の Solver Type は **Fixed-step** に設定して、タイムステップを PSIM と同じか、近い値に設定してください。また、 Solver Type を **Variable-step** にした場合はゼロ次ホールドを使って、サンプル時間を PSIM のタイムステ ップと同じに設定するようにしてください。 5.6.3 PSIM から Simulink へのパラメータの受け渡し(Passing Parameters from Simulink to PSIM)

パラメータの値は Simulink で設定し、PSIM に渡すことができます。例えば、インダクタンス L1 を Simulink で設定し、その値 varL1 を PSIM で変更する場合は、以下のように行います。

Parameters Other I	nfo Color	
Inductor		Help
		Display
Name	L1	
Inductance	varL1	V -
Initial Current	0	
Current Flag	1	• •

まず Simulink 上で、SimCoupler ブロックをダブルクリックしてプロパティダイアログを開き、"Add Variable"ボタンをクリックします。そして下図のように、リストに新しく追加された行をクリックし、変 数名と値を入力します。

F.Jim.	Schematic File:		
'C:\PS	SIM\examples\SimCoupler	chop1q_ifb_psim_param.psimsch'	Browse
			Show Schematic
	Variable	Value	
1	varL1	1m	
			Add Variable
			Delete Variable

変数 varL1 は PSIM からアクセスすることができるようになります。

5.7 CosiMate リンク (CosiMate Links)

CosiMate リンクは、PSIM と CosiMate 間のリンクを提供します。CosiMate は、さまざまなソフトウェ アをサポートする連成シミュレーションのプラットフォームです。リンクを通して、PSIM と、CosiMate がサポートするソフトウェアとの間の連成シミュレーションを行うことができます。CosiMate についての 詳細な情報は、<u>www.chiastek.com</u>を参照してください。

リンクは、入力ポートと出力ポートの二つのパートから構成されています。入力ポートは、CosiMateから PSIM への制御信号入力を意味します。出力ポートは、PSIM から CosiMate への制御信号出力を意味します。連成シミュレーションでは、データはこれらのポートを通して、PSIM と他のソフトウェアの間でやり取りされます。CosiMate がインストールされている場合にのみ、リンクは機能するようになります。

リンクのセットアップ方法についての詳細な情報は、CosiMateに関連したドキュメントを参照してください。

5.8 Design Suite ブロック (Design Suite Blocks)

このセクションでは、モータドライブシステム用途向けの基本的な電力と制御の要素について、記載します。

以下の制御ブロックが提供されています。

- トルク制御 (PMSM)
- ダイナミックトルクリミット制御(PMSM)
- 電圧制御(PMSM)
- DC-DC Charging Control
- DC-DC Discharging Control
- DC-DC Regeneration Control

上記のブロックは、HEV デザインスイートの一部です。

5.8.1 トルク制御(PMSM) (Torque Control(PMSM))

トルク制御(PMSM)ブロックは、線形 PMSM 向けのみとなります。以下のように定義されています。 シンボル

仕様

パラメータ	機能
Ld (d 軸インダクタンス)	モータの d 軸インダクタンス(H)
Lq (q 軸インダクタンス)	モータの q 軸インダクタンス(H)
Vpk/krpm	線間のピーク誘起電圧定数、単位は V/krpm (機械系の回転速度)
極対数	モータの極対数
積分器ゲイン	トルクループの積分器コントローラのゲイン
最大トルク	モータの最大トルク(N*m)
基底電流	単位システムあたりの基底電流 lb(A)
基底トルク	単位システムあたりの基底トルク Tb(N*m)
サンプリング周波数	トルクループの積分器コントローラのサンプリング周波数(Hz)

トルク制御ブロックは、以下の入出力があります。

- ld d軸電流フィードバック
- lq q軸電流フィードバック
- Te トルク指令値
- ls 電流振幅指令値
- Tes モータによって発生された推定トルク

このブロックは、電流のフィードバックとモータのパラメータから発生するモータのトルクを推定しま す。離散積分に基づいた制御ループは、モータのトルクと電流指令値を調整する為に使われます。 そして、制御されたPMSMとインバータの定格電流をパラメータとして必要とします。

5.8.2 ダイナミックトルクリミット制御(PMSM) (Dynamic Torque Limit Control(PMSM))

ダイナミックトルクリミット制御(PMSM)ブロックは、線形 PMSM のみが対象となります。 シンボル

Dynamic Torque
↔ Id To a
↔ Iq
↔ Vdc
↔ Wm Wm_th -•
↔ Tcmd FW →

仕様

パラメータ	機能
Ld (d 軸インダクタンス)	PMSM の d 軸インダクタンス(H)
Lq (q 軸インダクタンス)	PMSM の q 軸インダクタンス(H)
Vpk/krpm	線間のピーク誘起電圧定数 (V/krpm)(機械系の回転速度)
極対数	極対数
最大トルク	最大モータトルク (N*m)
最大速度	最大モータ速度(rpm)
最大出力	最大モータ出力(W)
基底電圧	システムの基底電圧(V)
基底電流	システムの基底電流(A)
基底速度	基底速度(rad/sec)
基底トルク	単位システムあたりの基底トルク Tb(N*m)

トルク制御ブロックには、以下の入出力があります。

- ld d軸電流フィードバック
- lq q軸電流フィードバック
- Vdc DC バス電圧フィードバック
- Wm モータ機械速度(rad/sec)
- Tcmd トルクコマンド
- Te トルク指令値
- nmb トルク最大領域における算出された制限速度(rpm)

FW 弱め磁束のフラグ(1:弱め磁束領域内、0:弱め磁束領域内ではない)

このブロックは、最大トルク領域における制限速度を計算します。モータ速度がこの制限速度より低い 場合は、モータは最大トルク領域内で駆動します。そうでない場合は、弱め磁束制御により最大電力領域 内で駆動します。

ブロックには、制御された PMSM のパラメータとインバータの定格電圧が必要となります。

基底値がすべて1の時、すべての入出力量が真値となります。

このブロックはモータに接続されたインバータがスペースベクトル PWM を持つ 6 パルスインバータで あると仮定することに注意してください。

AC相と中点間の電圧(ピーク値)の最大値は次のように計算されます。

$$V_{\rm ph_max} = \frac{V_{dc}}{\sqrt{3}}$$

内部では、弱め磁束への遷移の境界を決定する時に、0.9 の安全ファクターが使われます。このファク ターを取り除くためには、Vdc インプットポートの前で DC 電圧を 0.9 で割ってください。

5.8.3 ダイナミックトルクリミット制御(非線形 PMSM)

(Dynamic Torque Limit Control(Nonlinear PMSM))

ダイナミックトルクリミット制御(非線形 PMSM)ブロックは、非線形 PMSM のみが対象となります。

Dyn	amic Torque	(NL)
0	Id Te	—o
0 .)	Iq	
0 .	Ld	
0 .)	Lq	
0 .)	Lambda	
0 .)	Vdc	
↔	Wm Wm_th	_o
ر ه (Tcmd FW	O

仕様

111*	
パラメータ	機能
極対数	極対数
遮断周波数	内部ローパスフィルタの遮断周波数 fc(Hz)
最大トルク	最大モータトルク (N*m)
最大速度	最大モータ速度(rpm)
最大出力	最大モータ出力(W)
基底電圧	システムの基底電圧(V)
基底電流	システムの基底電流(A)
基底速度	基底機械速度(rad/sec)
基底トルク	単位システムあたりの基底トルク Tb(N*m)
サンプリング周波数	内部ローパスフィルタのサンプリング周波数(Hz)

ダイナミックトルクリミット制御ブロックは、非線形 PMSM の制御のみが対象となります。 以下の入出力があり、"Ld"、"Lq"、"Lambda"以外は、ユニット値ごとになります。 ベースの値となる"Vb"、"lb"、"Wmb"が全て1の時は、全ての入出力の値は実数となります。

入力信号

ld	d軸電流フィードバック			
lq	q軸電流フィードバック			
Ld	d軸インダクタンス(H)			
Lq	q軸インダクタンス(H)			
Lambda ピークステータ相の鎖交磁束(Weber)				
Vdc	DCバス電圧フィードバック			
Wm	モータ機械速度			
Tcmd	トルク指令の入力値			

出力信号

 Te
 トルク指令の出力値

 Wm th
 定トルク領域における計算された閾値速度

FW 弱め磁束のフラグ(1: 弱め磁束領域内、0: 弱め磁束領域内ではない)

このブロックは、定トルク領域における閾値速度を計算します。モータ速度がこの閾値速度より低い場 合は、モータは定トルク領域内で駆動します。そうでない場合は、弱め磁束制御により定電力領域内で駆 動します。

ブロック内部にある fc の遮断周波数と減衰比 0.7 の二次ローパスフィルタは、計算された閾値速度出力 を滑らかに変化させる為に使用されます。

5.8.4 電圧制御(PMSM) (Voltage Control(PMSM))

電圧制御ブロックは、線形 PMSM のみが対象となります。 シンボル

	Voltage Control
0- - - - - - -	> Vdc* > Vdc Te —∘ > Wm

仕様

パラメータ	機能
PIゲイン	電圧ループ Pl コントローラのゲイン
PI 時定数	電圧ループ Pl コントローラの時定数
最大トルク	モータの最大トルク(N*m)
基底電圧	単位システムあたりの基底電圧 Vb(V)
基底電流	単位システムあたりの基底電流 lb(A)
基底速度	単位システムあたりの基底速度 Wmb(rad/sec)
基底トルク	単位システムあたりの基底トルク Tb(N*m)
サンプリング周波数	電圧 PI コントローラのサンプリング周波数(Hz)

電圧制御ブロックには、以下の入出力があります。

入力信号

- Vdc* DC バス電圧指令
- Vdc DC バス電圧フィードバック
- Wm モータ機械速度 (rad/sec)

出力信号

Te トルク指令の出力値

基底値 Vb、lb、Wmb、Tb が全て1に設定されている場合、全ての入出力量は実際の値になります。

このブロックは、DC バス電圧を制御するために、デジタル PI コントローラを使用します。このブロックは、DC バス電流と機械速度とともに、機械電流基準を生成します。

5.8.5 DC-DC 充電制御 (DC-DC Charging Control)

DC-DC 充電制御ブロックは、以下のように定義されています。

シンボル

Charging Control		
0	Vbatt	
¢ Z	Vm —•	

仕様

1上 作家	
パラメータ	機能
バッテリ充電電力	DCDC コンバータの定格電力(W)
バッテリ側電圧	バッテリ側のコンバータ定格電圧(V)
直列セル個数	バッテリパックの直列のセルの個数
並列セル個数	バッテリパックの並列のセルの個数
	電圧のディレーティング係数 Ks
电圧ナイレーナイング係数	0(100%のディレーティング)~1(ディレーティングなし)
フル電圧	バッテリセルのフル(または最大)電圧(V)
バッテリセル抵抗	バッテリセルの内部抵抗(Ohm)
電流 PI ゲイン	電流ループ Pl コントローラのゲイン
PI 電流時定数	電流ループ PI コントローラの時定数(sec)
電圧 PI ゲイン	電圧ループ PI コントローラのゲイン
PI 電圧時定数	電圧ループ PI コントローラの時定数(sec)
判御ゴロック山中上阳	制御ブロック出力値の上限(Vm)
刑仰ノロツク田刀上限	下限は0
サンプリング周波数	電圧と電流の PI コントローラのサンプリング周波数(Hz)

DC-DC 充電制御ブロックには、以下の入出力があります。

Vbatt バッテリ側の電圧

lbatt バッテリに流れ込む電流

Vm 変調信号出力

このブロックは、バッテリに対する定電圧定電流における充電制御を実装します。バッテリ端子電圧が バッテリフロート電圧より小さい場合は、一定の電流で充電します。その場合、電圧は無効となり、電流 ループは一定の電流レートでバッテリを充電します。なお、バッテリフロート電圧は、内部バッテリのフ ル電圧とバッテリ抵抗の電圧降下を加算した値です。充電電流の振幅は、バッテリ側のコンバータの定格 電流に設定されます。

ー方、バッテリの端子電圧がフロート電圧に達したときは、定電圧で充電します。電圧ループは、電流 ループ用の指令値を生成します。

デジタル PI コントローラは、電圧および電流ループに使用されます。

5.8.6 DC-DC 放電制御 (DC-DC Discharging Control)

DC-DC 放電制御ブロックは、以下のように定義されます。

シンボル

Discharging Control	
ب ه	Vdc
	Vm —>
<u>م</u>	Ibatt

仕様

パラメータ	機能
電流/電圧モード	放電制御の運転モード(0:電流モード、1:電圧モード)
バッテリ放電電力	DCDC コンバータの定格電力(W)
バッテリ側電圧	バッテリ側のコンバータ定格電圧(W)
DC バス電圧指令	DC バス電圧指令値(V)
電流 PI ゲイン	電流ループ PI コントローラのゲイン
PI 電流時定数	電流ループ PI コントローラの時定数(sec)
電圧 PI ゲイン	電圧ループ PI コントローラのゲイン
PI 電圧時定数	電圧ループ PI コントローラの時定数(sec)
ᄮᄳᅼᇢᆢᇰᆘᆂᅣᄜ	制御ブロック出力値の上限(Vm)
前御フロック田力上限	下限は0
サンプリング周波数	電圧と電流の PI コントローラのサンプリング周波数(Hz)

DC-DC 放電制御ブロックには、以下の入出力があります。

Vdc DC バス電圧フィードバック

lbatt バッテリに流れ込む電流

Vm 変調信号出力

このブロックは、バッテリに対する定電圧もしくは定電流の放電制御を実装します。運転モードが電圧 モード(1)に設定されている場合は、コンバータは DC バス電圧を制御します。そして、電圧ループは電流 ループ用の指令値を生成します。運転モードが電流モード(0)に設定されている場合は、コンバータは DC バスに流れ込む電流が最大になるように電流を制御します。

デジタル PI コントローラは、電圧および電流のループに使用されます。

5.8.7 DC-DC 回生制御 (DC-DC Regeneration Control)

DC-DC 回生制御ブロックは、以下のように定義されます。

シンボル

Regen Control			
•>	Vdc	Rgn	-0
•	Tes		
جە	Wm		

仕様

パラメータ	機能
回生電力閾値	モータ電力レベルの閾値。閾値を超えると、回生が有効になります。
同步专动化吐明	回生が有効になる時間の指定。(s)
回生有刻化時间	この時間より前は回生が無効化されています。
最小 DC 電圧	最小 DC バス電圧(V)
最大 DC 電圧	最大 DC バス電圧(V)
サンプリング周波数	スピードフィードバック用ローパスフィルタのサンプリング周波数(Hz)

DC-DC 回生制御ブロックには、以下の入出力があります。

入力信号

- Vdc DC バス電圧フィードバック
- Tes トラクションモータの推定発生トルク
- Wm トラクションモータの機械速度(rad/sec)

出力信号

Rgn 回生フラグ (0:回生でない; 1:回生)

このブロックは、DC バス電圧とトラクションモータ電力に基づいて、回生フラグを生成します。モータ 電力が負の場合(発電モード)かつ、電力の振幅の大きさが閾値を超える場合は、回生フラグが 1 に設定さ れ、回生が可能になります。

起動時の過渡状態で、誤ったトリガを検出しないようにするため、回生有効可能な時間を定義します。 回生は、この時間が経過した後にのみ有効になります。

第6章 その他の素子

この章では PSIM のライブラリ項目「その他」について記述します。

6.1 スイッチ制御器 (Switch Controllers)

スイッチ制御器は実際のゲートあるいはベース駆動回路と同じ機能を実現します。スイッチ制御器は制 御回路から信号を受け取り、パワー回路のスイッチを制御します。ひとつのスイッチ制御器で、複数のス イッチを同時に制御できます。

6.1.1 オンオフ制御器 (On-Off Switch Controller)

オンオフ制御器は制御回路のゲート信号とパワー回路のスイッチ動作とのインターフェースとして使います。制御回路からの入力は0か1の論理信号で、出力をパワー回路にゲート信号として加えることによりスイッチ素子の開閉を制御します。

下に示すのは負荷のステップ変化を実現する回路です。オンオフ制御器が双方向スイッチを開閉するの に使われています。制御器の入力に加えたステップ電圧源が時刻 12ms で 0 から 1 に変化すると、スイッ チ素子が閉となり、スイッチに並列に接続された抵抗をショートするので電流が増加します。

6.1.2 点弧角制御器(Alpha Controller)

点弧角制御器(α-controller)はサイリスタ・スイッチまたはブリッジの点弧遅れ角を制御するのに使いま す。この制御器への入力は、点弧角(α)の値、同期信号、ゲート使用・不使用(enable/disable)信号の3種類 です。同期信号が Low(0)から High(1)に変わるときに点弧角が零になるように同期をおこないます。点弧 角制御器はα度の遅れ角を調整して、サイリスタにゲート信号を送ります。点弧角αの値は瞬時に更新さ れます。

シンボル

仕様

パラメータ	機	能			
周波数	制御対象のスイッチの動作周波数(Hz)				
パルス幅	スイッチのオン時間のパルス幅(度)				
	• - -				

遅れ角の入力値は度で与えます。

例

下の図に遅れ角制御を使ったサイリスタ回路を示します。v_sのゼロクロス時点を同期に使っています。 この時点でサイリスタは自然点弧するはずですが、ここでは遅れ角を 30°に設定しているので、ゲート信号 は同期信号の立ち上がりから 30°遅れます。

6.1.3 PWM ルックアップテーブル制御器 (PWM Lookup Table Controller)

PWM ルックアップテーブル制御器の入力は、変調指標、遅れ角、同期信号、およびゲート使用・不使用 の4種類です。変調指標によりゲート・パターンが変わります。同期信号はゲート・パターンの同期に使 います。同期信号が Low(0)から High(1)に変わるとき、ゲート・パターンが更新されます。遅れ角はゲー ト・パターンと同期信号の相対的な角度を与えます。たとえば、遅れ角が 10°のとき、ゲート・パターンは 同期信号から 10°進んでいることになります。

1	1	+*
1	Т	「尔

- 1	
パラメータ	機能
周波数	スイッチング周波数(Hz)
更新角度	ゲート信号を内部的に更新する角度(度)。この角度が 360°のとき、ゲート信号は毎サイクルごとに更新されます。また、60°に設定すると、60°ごとの更新になります。
ファイル名	PWM ゲート・パターンを格納するファイル名

ゲート・パターンを示すルックアップテーブルは外部ファイルに格納されます。フォーマットは以下の とおりです。

 $\begin{array}{c}n, m_1, m_2, ..., m_n\\k_1\\G_{1,1}, G_{1,2}, ..., G_{1,k1},\\...\\k_n\\G_{n,1}, G_{n,2}, ..., G_{n,kn},\end{array}$

14

ここで、nはゲート・パターンの数、miはパターンiに対応した変調指数、kiはパターンiのスイッチ 点数です。変調指数の配列 m1 ... mnは単調に増加するように指定してください。入力が mi以下であると、 出力は自動的に i 番目のパターンになります。入力が mnを越えると、最後のパターンが選ばれます。 次の表に PWM パターン・ファイルの例を示します。変調指数は4 で、スイッチング点数は 14 です。

4, 0.901, 0.910253, 0.920214, 1.199442

 7.736627
 72.10303
 80.79825
 99.20176
 107.8970
 172.2634
 180.

 187.7366
 252.1030
 260.7982
 279.2018
 287.8970
 352.2634
 360.

 14
 7.821098
 72.27710
 80.72750
 99.27251
 107.7229
 172.1789
 180.

 187.8211
 252.2771
 260.7275
 279.2725
 287.7229
 352.1789
 360.

 14
 7.902047
 72.44823
 80.66083
 99.33917
 107.5518
 172.0979
 180.

 187.9021
 252.4482
 260.6608
 279.3392
 287.5518
 352.0980
 360.

 14
 10.186691
 87.24225
 88.75861
 91.24139
 92.75775
 169.8133
 180.

 190.1867
 267.2422
 268.7586
 271.2414
 272.7578
 349.8133
 360.

このルックアップテーブルの例で、変調指数の入力が 0.8 のとき、最初のゲート・パターンが選ばれま す。変調指数が 0.915 であると、3 番目のパターンが選ばれます。

例

以下の回路図に三相電圧源インバータ(ファイル:vsi3pwm.sch に格納)を示します。コンバータ用の PWM は高調波消去をおこないます。上記のゲート・パターンが vsi3pwm.tbl にあらかじめ格納してあり、 変調指標の値に応じたゲート・パターンが選ばれます。線間電圧と三相負荷電流の波形を下に示します。

6.2 電圧・電流センサ (Sensors)

電圧・電流センサはパワー回路の電圧・電流を計測し、制御信号に計測値を送ります。電流センサの 内部抵抗は、1μΩです。 シンボル

 Voltage Sensor	Current Sensor	
° N		
	ů (

シンボルについているドットは+端子を示します。

L	L	4#
Τ.	L	「尔

-	- IT				
	パラメータ	機能			
	ゲイン	センサのゲイン			

6.3 プローブとメータ、スコープ (Probes, Meters, and Scopes)

プローブとメータは電圧、電流、電力、またその他の数量を測定するために使います。一方でスコープ は電圧波形、電流波形を表示します。

6.3.1 プローブとメータ (Probes and Meters)

以下の図に、電圧プローブ、電流プローブ、DC電圧系、AC電圧系、DC電流計、AC電流計、単相及び 三相のワットメーター、kWhメータ、VARメータ、VA力率メータを示しています。電圧プローブは接続 された端子と基準電位(GND)の間の電圧を測ります。2端子間の電圧を測るには、2端子用のプローブを使 います。電流プローブ/メータは、ドットの付いた側から流入する電流を測定します。同様に、パワーメー ターはドットの付いた側から流入する電力を測定します。グラウンド接地型のプローブを除き、すべての プローブとメータはパワー回路でのみ使うことができます。

プローブが電圧や電流を瞬時値で測定するのに対し、メータは直流または交流の量を測定します。 電流を測定する為の電流プローブの内部抵抗は、 1μΩ です。 **シンボル**

11	
1 T	A
14	147

パラメータ	機能
動作周波数	交流メータの動作周波数または基本波周波数(Hz)
遮断周波数	ローパスフィルタまたはハイパス・フィルタの遮断周波数
開始時刻	kWh メータが測定を開始する時刻(sec)※ワット/kWh メータのみ
停止時刻	kWh メータが測定を停止する時刻(sec)※ワット/kWh メータのみ
皮相電力フラグ	皮相電力の表示フラグ(0:表示しない;1:表示する)※VA カ率メータのみ
カ率フラグ	カ率の表示フラグ(0:表示しない;1:表示する)※VA カ率メータのみ
等価力率フラグ	等価力率の表示フラグ(0:表示しない;1:表示する)※VA 力率メータのみ

単相/三相ワットメーターおよび kWh メータの図で、"W"と表示されたノードは有効電力の出力(W)で、 "kWh"のノードは kWh 出力(kWh)になります。

電力計と直流メータには高周波成分を除くためローパスフィルタを使っています。一方、交流メータに は直流分を除くためハイパス・フィルタを使います。遮断周波数により各フィルタの過渡応答が決まりま す。

電圧・電流プローブを除いて、メータの指示値は定常状態でのみ有効です。

単相及び、3相 VARメータは、無効電力(VAR)を基本周波数で測定します。

VA カ率メータは、皮相電力(VA)・総合力率(PF)・基本波力率(DPF)を測定します。

kWh メータは、定義された開始から終了までの間の、有効電力の積分値を示します。

単相の回路では、有効電力 P、無効電力 Q、皮相電力 S、総合力率 PF および基本波力率 DPF(displacement power factor)は以下のように定義されます。

電圧・電流が高調波を含むと仮定すると、

$$v(t) = \sqrt{2V_1 \sin(\omega_1 t + \phi_1)} + \sqrt{2V_2 \sin(\omega_2 t + \phi_2)} + \dots$$

$$\cdot i(t) = \sqrt{2I_1 \sin(\omega_1 t + \theta_1)} + \sqrt{2I_2 \sin(\omega_2 t + \theta_2)} + \dots$$

ここで、ω1 は基本波の周波数、その他のωはすべて高調波の周波数です。電圧と電流の実効値は、

 $V_{rms} = \sqrt{V_1^2 + V_2^2 + \dots}$

$$I_{rms} = \sqrt{I_1^2 + I_2^2} + .$$

有効電力(または平均電力)Pは次のように定義します。

$$P = \frac{1}{T} \int_0^T (v(t) \cdot i(t)) dt$$

ここで T は基本波の周期です。

無効電力Qは以下のように定義します。

 $Q = V_1 \cdot I_1 \cdot \sin(\phi_1 - \theta_1)$

無効電力は基本波成分のみであることに注意して下さい。

皮相電力Sは以下で定義できます。

 $S = V_{rms} \cdot I_{rms}$

すると、総合力率 PF および基本波力率 DPF は以下のようになります。

$$PF = \frac{P}{S}$$

 $DPF = \cos(\phi_1 - \theta_1)$

三相回路についても同様の定義になります。

3相のワットメーター・kWhメータ・VARメータ・VA力率メータを含む全ての3相メータは、3相3線の回路専用です。3相4線の回路では使用できませんので、ご注意ください。

メータは、3相の電圧および電流の和は0であるという前提に基づいています。すなわち、

 $v_a + v_b + v_c = 0$

$$i_{a}+i_{b}+i_{c}=0$$

3相4線の回路には、単相メータをご使用ください。

単相または3相のワットメーター・VARメータをご使用の際には、メータを回路の中に挿入してください。

例

下図の回路は単相または3相のメータの使用方法を示しています。 左の回路は、単相のワットメーター・VARメータの使用方法を示しています。 右の回路は三相のワットメーター・VARメータの使用方法を示しています。

6.3.2 電圧/電流スコープ (Voltage/Current Scopes)

電圧/電流のプローブとメータはシミュレーション終了後の波形表示のために、シミュレーション結果を 保存します。一方、電圧/電流のスコープを用いて、シミュレーション実行途中でシミュレーション波形を 見ることができます。PSIMには、1チャンネル電圧スコープ、2チャンネル電圧スコープ、4チャンネル電 圧スコープおよび電流スコープの4つのスコープがあります。

1チャンネル電圧スコープ、4チャンネル電圧スコープと電流スコープの波形表示ウィンドウの下に表示 される操作パネルは同一です。4チャンネルスコープでは、チャンネルはドロップダウンリストから選択す ることができ、設定は選択されたチャンネルに反映されます。

実際のオシロスコープと同じように操作できるようになっており、Timebase機能、Channel機能、及び Trigger機能の3つの主な機能があります。

Timebase機能は時間(x軸)のスケールを定義することができます。

Channel機能は、波形のY軸のスケール、オフセット、および色を定義することができます。チャンネル 表示モードはDC、AC、またはGNDのいずれかに設定できます。表示モードがDCのとき、全体の波形が表 示されます。表示モードをACにすると、波形の交流部分だけが表示されます。表示モードがGNDにある時、 波形は0を示します。

Trigger機能は、トリガ状態を定義することができます。ONまたはOFFのどちらかにトリガを設定しま す。トリガがオフである場合、波形は自動的に更新されます。トリガがオンである場合、トリガ条件が満 たされた時だけ波形の表示更新を行い安定した波形表示ができます。

トリガモードは次の3つがあります。立ち上がりエッジトリガ、立ち下がりエッジトリガとワンショットトリガ。once チェックボックスをチェックするとワンショットトリガが選択されます。ワンショットトリガは一回だけ波形を取り込みます。過渡現象を捕らえる場合に有効です。トリガレベルはトリガ検出するレベルを設定します。例えば、チャンネルAは、立ち上がりエッジトリガで選択されており、トリガレベルを 0V とします。チャンネルAの入力が、マイナスから0を超える時にトリガが発生します。そして波形表示はその瞬間から開始されます。

スコープ上では、チェックボックス[Auto scale]がチェックされている場合、全てのチャンネルのスケー ルは自動的に調整されます。その結果、波形はスコープ内に収まるように表示されます。

電力回路ノードまたは制御回路ノードのどちらでも電圧スコープをつなげることができます。スコープ はこれらのノードにおけるGNDに対する電圧を表示します。

電流スコープは、電流フラグのパラメータを持っている要素の電流を表示することができます。電流ス コープには接続端子がありません。電流を表示させたい要素の上にマウスポインタを置き、右ボタンをク リックしてください。そして Current Scopes のブランチ電流を選択することによって、以下に示されるよ うに電流スコープが有効になります。ブランチ電流が選択された後に、チェックマークはブランチ電流名 の正面に現れます。

要素がCurrent Scopesメニューの複数の電流フラグを持っていると、複数のブランチ電流が表示されます。それぞれのブランチはそれぞれの電流のフラグに対応するようになります。

- 例えば、三相抵抗R1に関して、*Current Scopes* メニューで3つのブランチ電流が表示されます。 I(R1) A
 - I(R1) B I(R1) C

文字「A」、「B」、および「C」はそれぞれチャンネルA、B、およびCについて言及します。例えば「I(R1)A」、 「I(R1)B」及び、「I(R1) C」のすべてが選択されたばあい、電流スコープでは、ChannelセクションのChannel プルダウンメニューに行って、チャンネルの一つを表示のために使うことができます。Channel Aが選択さ れると、スコープはA相のブランチ電流I(R1)を示します。

6.4 ファンクションブロック (Function Blocks)

6.4.1 制御・パワー変換ブロック (Control-Power Interface Block)

制御・パワー変換ブロックは制御回路の値をパワー回路に伝えます。このブロックは制御回路とパワー 回路のバッファとして使います。PSIM がパワー回路を解析するとき、変換ブロックの出力は定電圧源とし て扱います。このブロックを使うことにより制御回路でのみ得られる機能をパワー回路で使うことができ ます。

シンボル

«C/p−

例:定電力負荷モデル

定電力の直流負荷では、電圧 V、電流 I、および電力 Pのあいだに P = V*Iの関係が成り立ちます。した がって、電力と電圧が決まれば、電流は I = P/V から計算できます。この特性は次のような回路で実現でき ます。

負荷の両端の電圧を電圧センサで測り、除算器に入力すると、除算器の出力は電流 / を示します。初期状 態では電圧が零または非常に低い値になる可能性があるので、電流の値をリミッタでおさえています。こ の値を制御・パワー変換ブロックを使って、負荷の電流として電圧制御電流源を通じてパワー回路に戻し ています。

例

以下に示す回路は制御回路の信号をパワー回路に伝える例です。パワー回路の構成からわかるように、 制御・パワー変換ブロック(CTOP)は接地された電圧源として働きます。

6.4.2 変換ブロック (Transformation Blocks)

PSIM は以下の変換ブロックを提供します。

- abc-dqo 変換ブロック
- abc-αβ 変換ブロック
- αβ-dq 変換ブロック
- 直交座標系ー極座標系変換ブロック

これらのブロックは制御回路だけでなく、パワー回路でも使用することができます。

6.4.2.1 abc-dqo 変換ブロック (abc-dqo Transformation)

abc-dqo 変換ブロックは、abc 座標と dqo 座標間の変換を行います。この変圧は【パーク変換】と呼ばれます。 シンボル

仕様

パラメータ	機能
変換フラグ	変換フラグ (0: q 軸は d 軸より進んでいる、1: q 軸は d 軸より遅れる)

ブロックの下部にある端子から入力する角度(θ)はラジアンです。

パワー回路では、軸変換の前に電流値は電圧値(電流制御電圧源を使用)に変換しなければなりません。 また、使用しない入力端子(例:dqo-to-abc変換ブロックで位相 d, q, または o が使用されてない)は、グ ランドに接続して下さい。

変換フラグの値による、変換方程式は下記の通りです。 abc から dqo への変換で変換フラグを0に設定した場合

[v.]	$\cos\theta$	$\cos\!\left(\theta - \frac{2\pi}{3}\right)$	$\cos\left(\theta + \frac{2\pi}{3}\right)^{-1}$	Γν Γ
$\begin{vmatrix} v_q \\ v_q \end{vmatrix} = \frac{2}{3}$.	$-\sin\theta$	$-\sin\left(\theta - \frac{2\pi}{3}\right)$	$-\sin\left(\theta + \frac{2\pi}{3}\right)$	$\cdot \begin{vmatrix} v_a \\ v_b \end{vmatrix}$
v_o	1	1	1	$\begin{bmatrix} v_c \end{bmatrix}$
	2	$\overline{2}$	$\overline{2}$	

abcからdqoへの変換で変換フラグを1に設定した場合

$\begin{bmatrix} v_d \end{bmatrix}$	$\cos \theta$	$\cos\left(\theta - \frac{2\pi}{3}\right)$	$\cos\left(\theta + \frac{2\pi}{3}\right)^{-1}$	$\begin{bmatrix} v_a \end{bmatrix}$
$\begin{vmatrix} u \\ v_q \end{vmatrix} = \frac{2}{3}$.	$\sin \theta$	$\cos\left(\theta - \frac{2\pi}{3}\right)$	$\cos\left(\theta + \frac{2\pi}{3}\right)$	$\cdot \begin{vmatrix} u \\ v_b \end{vmatrix}$
$\lfloor V_o \rfloor$	1	1	1	$\lfloor v_c \rfloor$
	2	$\overline{2}$	$\overline{2}$	

変換行列前の「2/3」の係数は、変換が振幅不変であることを指します。電力振幅は不変ではありません。 dq ベクトルの振幅と三相正弦波形のピーク振幅が同じであることを示します。同じ電力を得るには、dq フレームでの電力に 3/2 を乗算、すなわち Power = va*ia + vb*ib + vc*ic = 3/2 *(vd*id+vq*iq)としなければ なりません。電力不変な変換をする為には、2/3 を $\sqrt{2/3}$ に交換し、1/2 を $\sqrt{1/2}$ に置き換えます。 dqoからabcへの変換で変換フラグを0に設定した場合

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 1 \\ \cos\left(\theta - \frac{2\pi}{3}\right) & -\sin\left(\theta - \frac{2\pi}{3}\right) & 1 \\ \cos\left(\theta + \frac{2\pi}{3}\right) & -\sin\left(\theta + \frac{2\pi}{3}\right) & 1 \end{bmatrix} \cdot \begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix}$$

dqoからabcへの変換で変換フラグを1に設定した場合

	$\cos \theta$	$\sin \theta$	1	
$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} =$	$\cos\left(\theta - \frac{2\pi}{3}\right)$ $\cos\left(\theta + \frac{2\pi}{3}\right)$	$\sin\left(\theta - \frac{2\pi}{3}\right)$ $\sin\left(\theta + \frac{2\pi}{3}\right)$	1	$\begin{array}{c c} & v_d \\ \cdot & v_q \\ v_o \end{array}$

例

この例では、対称三相の電圧波形を dqo 系の値に変換しています。角度 θ は ω = 2 π *60 を使って θ = ω t と定義しています。角度 θ は時間に対して線形に変化するので、 θ を表現するのに区分線形電源でランプ波(のこぎり波)を設定します。シミュレーション波形は、三相交流(上)、角度 θ (中)、dqo 出力(下)を示しています。この例では q 軸成分が定数で、d 軸と o 軸の成分はどちらも零になっています。

6.4.2.2 abc-αβ変換ブロック (abc-αβ Transformation)

abc-αβ変換ブロックは abc 座標系から αβ座標系に軸変換及び逆変換します。 シンボル

イメージでは、文字「al」は α を、「be」は β を示します。

abc 座標系から αβ 座標系への変換公式は以下の通りです

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} v_{a} \\ v_{b} \\ v_{c} \end{bmatrix}$$

ab 座標系から αβ 座標系への変換公式は以下の通りです

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{3}{2}} & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{2} \end{bmatrix} \cdot \begin{bmatrix} v_{a} \\ v_{b} \end{bmatrix}$$

ac 座標系から αβ 座標系への変換公式は以下の通りです

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{3}{2}} & 0 \\ -\frac{\sqrt{2}}{2} & -\sqrt{2} \end{bmatrix} \cdot \begin{bmatrix} v_{a} \\ v_{c} \end{bmatrix}$$

αβ 座標系から abc 座標系への変換公式は以下の通りです

$$\begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \cdot \begin{bmatrix} v_\alpha \\ v_\beta \end{bmatrix}$$

ab-αβ 及び ac-αβ 座標変換の時、*va+vb+vc*=0 が仮定されています。

6.4.2.3 αβ-dq 変換ブロック (αβ-dq Transformation)

αβ-dq 機能ブロックには、多くの場合、パーク変換と呼ばれる座標 αβ から dq への変換を行います。 dq-αβ 機能ブロックは、多くの場合、逆パーク変換と呼ばれる座標 dq から αβ への変換を行います。

シンボル

イメージでは、文字「al」は α を、「be」は β を示します。位相角 θ の入力において、弧度法(rad)また は sin(θ)、cos(θ)のいずれかをとることができます。

αβ 座標系から dq 座標系への変換公式は以下の通りです

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \cdot \begin{bmatrix} v_\alpha \\ v_\beta \end{bmatrix}$$

dq 座標系から αβ 座標系への変換公式は以下の通りです

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} v_{d} \\ v_{q} \end{bmatrix}$$

6.4.2.4 直交座標-極座標変換ブロック (Cartesian-Polar Transformation) 直交座標-極座標変換ブロックは直交座標から極座標に軸変換及び逆変換します。

イメージでは、文字「r」は振幅を表します。また、文字「a」は位相角 θ(単位、rad)を表します。 直交座標系から極座標系への変換公式は以下の通りです。

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \operatorname{atan}\left(\frac{y}{x}\right)$$

極座標系から直交座標系への変換公式は以下の通りです。 $x = r \cdot \cos \theta$

$$y = r \cdot \sin \theta$$

6.4.3 数式関数ブロック (Math Function Blocks)

数式関数ブロックの出力は入力変数の関数として表現されます。このブロックを使うことにより、複雑かつ非線形の入出力関係を簡単に実現できます。入力数が 1,2,3,5,10 のブロックが用意されています。 シンボル

仕様

パラメータ	機能
関数 f(x1,x2,,xn)	入出力関係を与える数式表現。nは入力の数です。
微分関数 df/dxi	関数 f の i 番目の入力 xi に関する微分の数式表現

微分はゼロに設定してもかまいません。

関数のなかで使える変数は、時刻 T または t および入力変数 xi(i は 1 から n まで)です。ここで変数 xiは i 番目の入力を示します。たとえば、3 入力の数式関数ブロックを使用した場合、変数は T, t, x1, x2, x3 とな ります。1 入力の数式関数ブロックでは、入力 x も変数とみなされます。

6.4.4 ルックアップテーブル (Lookup Tables)

四種類のルックアップテーブルが存在します。一次元ルックアップテーブル、Simview グラフからのデ ータを読み込める一次元ルックアップテーブル、そして整数入力及び浮動小数点入力の二次元ルックアッ プテーブルです。

これら四つのルックアップテーブルは、電気回路でも制御回路でも使用できます。

シンボル

1-dime	1-dimensional		ensional
↔ <u><u> </u></u>	Simview graph \rightarrow	Integer \downarrow Index j Index $i \leftrightarrow$	Floating point

仕様 (一次元ルックアップテーブル(Simview グラフ)の場合)

パラメータ	機能
Graph File	ルックアップテーブルのデータとして使用される SimView ファイル名
Input Column	ルックアップテーブルの入力欄の指定 グラフファイルがロードされた後に、ドロップダウンメニューから選択さ れます。
Output Column	ルックアップテーブルの出力欄の指定 グラフファイルがロードされた後に、ドロップダウンメニューから選択さ れます。

ニ次元のルックアップテーブルブロックの左側の端子は行のインデックス入力用で、上部にある端子は 列のインデックス入力用です。

ー次元のルックアップテーブルには、入力と出力が一つずつあります。入力と出力の配列に対応した二 つのデータ配列が、ルックアップテーブルに保存されます。

整数入力の二次元ルックアップテーブルには二つの入力があります。一方、出力データは二次元の行列 の形で保存されています。二つの入力は、行列の行と列を指しています。例えば、行のインデックスが3 で、列のインデックスが4の場合、出力はA(3,4)になります。ただし、Aは行列のデータを意味します。 浮動小数入力用二次元ルックアップテーブルは、整数入力用二次元ルックアップテーブルに似た機能を 持ちます。両者の違いとしては、入力が浮動小数であることと出力の計算に補間が使われることです。

データがSimview内で定義される一次元ルックアップテーブル(Simview グラフ)を除き、ルックアップ テーブルのデータを定義する方法は二つあります。ひとつは、ルックアップテーブルタブ内のダイアログ から直接に入力する方法、もうひとつは、テキストエディタを使用してルックアップテーブルを外部で用 意し、ダイアログ内でファイルを定義する方法です。

ダイアログ内で直接データを入力するには、行の数を定義し(二次元ルックアップテーブルの場合は、 列の数も定義します)、"Set"をクリックします。そして、データセルに値を入力します。 浮動小数点入力の二次元ルックアップテーブルでは、最も左側の列にある行の入力配列と、最も上側の行 にある列の入力配列に入力します。

テキストファイルによりデータを外部で用意する場合は、以下に示すフォーマットでデータを定義しま す。その後"Open File…"をクリックして、ファイルをロードします。ロード後にテキストファイルが修正 された場合は、"Reload Data"をクリックします。データを外部ファイルにセーブルする場合は、"Save As…"をクリックします。

外部テキストファイルは、オプションです。よって、外部テキストファイルが定義されていない場合 は、内部データが使用されます。しかし、外部テキストファイルが定義されている場合は、テキストファ イルが優先され、内部データは上書きされます。ダイアログウィンドウが閉じられるとき、外部ファイル は自動的に保存されますので注意してください(ダイアログは右上のX印をクリックすることにより閉じま す)。

また、外部ファイルのコピーは、回路図のファイル内に保存されます。回路図のファイルが他のPCに 移動され、外部ファイルが存在しない場合は、PSIMは前回からのテキストファイルを再作成します。

ー次元のルックアップテーブルのデータフォーマットは、以下の通りです。 Vin(1), Vo(1) Vin(2), Vo(2)

左のカラムのVinは単調に増加する必要があります。入力が2つのデータの間の値の場合、出力値は線形 補完された値になります。また、入力がVin(1)より小さい場合およびVin(n)より大きい場合は、出力はVo(1) または Vo(N)にクランプされます。

整数入力の二次元ルックアップテーブルのデータフォーマット M, N A11, A12, ..., A1N A21, A22, ..., A2N AM1, AM2, ..., AMN たたし、M ト N が みわ ざわ 行 ト 別の 天日 です。 行また は 別の イ

ただし、MとNがそれぞれ行と列の番号です。行または列のインデックスは必然的に整数である必要が ありますので、入力値は自動的に整数に変換されます。行または列のインデックスのいずれかが有効範囲 から外れた(例えば行のインデックスが1より小さいまたはMより大きい)場合、出力はゼロになります。

浮動小数点入力の二次元ルックアップテーブルのデータフォーマット M, N Vr1, Vr2 … VrM Vc1, Vc2 … VcN A11, A12, …, A1N A21, A22, …, A2N … … … AM1, AM2, …, AMN ただし、M は行の番号、N は列の番号、Vr は行のベクトル、Vcは列のベクトル、A(i,j)は i 行目と j 列目に

ただし、Mは行の番号、Nは列の番号、Vrは行のベクトル、Vcは列のベクトル、A(I,J)はT行目とJ列目に おける出力の値です。ベクトル Vrと Vcは単純増加になるように指定してください。

 $V_{in}(N), V_o(N)$

入力が二つのポイントの区間内にある場合、値の計算に補間が使われます。入力が最小値より小さいか または最大値より大きい場合、入力は最小値ないし最大値にセットされます。

例

以下では一次元ルックアップテーブルを示します。

1., 10.

2., 30. 3., 20.

4., 60.

5., 50.

入力が 0.99 であるとき、出力は 10 になります。また、入力が 1.5 である場合、出力は $10 + \frac{(1.5-1) \times (30-10)}{2-1} = 20$ になります。

以下に整数入力用二次元ルックアップテーブルを示します。

3, 4 1., -2., 4., 1. 2., 3., 5., 8. 3., 8., -2., 9.

行のインデックスが2で、列のインデックスが4の場合、出力は8になります。行のインデックスが5 の場合、列のインデックスに関係なく出力が0になります。

以下では浮動小数入力用二次元ルックアップテーブルを示します。

3, 4 1.1 2.2 3.3 1.2 2.3 3.4 4.5 1., -2., 4., 1. 2., 3., 5., 8. 3., 8., -2., 9.

行の入力が 2.0 で、列の入力が 3.0 である場合、入力値を囲む 4 つのポイントのデータを利用して、以下のように補完計算が行われ、出力は 3.826 になります。

		Column		
		2.3	3.0	3.4
	1.1	-2		4
Row	2.0	2.091	3.826	4.818
	2.2	3		5

6.4.5 Cブロック (C Block)

Cブロックは、コードをコンパイルすることなく直接Cコードを入れることができます。この点で、外部のコンパイラにより、コンパイル済みのコードをDLLにする必要のある外部DLLブロックとは異なります。CブロックのCコードは、シミュレーション実行時にPSIM内蔵のCインタプリタによって解釈され実行されます。

Cブロックダイアログウィンドウのインターフェースを以下に示します。

Number of Input/Output Portsセクションでは、入力ポート及び出力ポートの数を定義します。ポートの数を変えた後、回路図でのブロック・図はそれに従って変化します。

[Insert GetPsimValue]機能は、パラメータファイルで定義されたパラメータにCブロックからアクセス することを可能にします。ある回路がR1と言う抵抗を持つと仮定すると、そのR1にアクセスするために は[Insert GetPsimValue]をクリックします。すると、以下のウィンドウが表示されます。

The text to be inserted into the	e script:
int nStatus = -1; // If the fund double nValue = GetPsimValu	ction succeeds, the value of nStatus will be 0. le(reserved_ThreadIndex, reserved_AppPtr, "R1",
Available element names:	parameters (with corresponding face names)
[Variable] R1	Resistance Current Flag
ОК	Cancel

OKをクリックすると、以下のコードが挿入されます。

int nStatus = -1; // If the function succeeds, the value of nStatus will be 0.

double nValue = GetPsimValue(reserved_ThreadIndex, reserved_AppPtr, "R1", "Resistance", &nStatus); 抵抗R1の抵抗値を取得し、変数nValueに設定されます。

たとえば、パラメータ・ファイルで"alpha"として定義された変数にアクセスするには、次のコードを使用します。

int nStatus = -1;

double nValue = GetPsimValue(reserved_ThreadIndex, reserved_AppPtr, "", "alpha", &nStatus);

if(nStatus != 0)

{ //optional error handling code

printf("Error: alpha = %f, nStatus = %i \n", value, nStatus);

}

変数alphaの値を取得し、変数nValueに設定されます。

高速シミュレーションでは、関数GetPsimValueはSimulationBeginで使用する必要があり、それは SimulationStep関数内でアクセスできるように変数nValueは、グローバル変数として定義する必要があり ます。

Function Typeでは、下記4つの選択肢があります。

Variable/Function Definitions	インクルードファイルとグローバル変数の定義を行います。
Simulation Step Function	各シミュレーションステップに呼ばれる関数を記述します。
SimulationBegin Function	初期化のためのシミュレーションの初めに一度だけ呼ばれる関数を記
	述します。
SimulationEnd Function	終了のためのシミュレーションの終わりに一度だけ呼ばれる関数を記
	述します。

記述したCコードにコンパイラエラーがあるかどうかチェックするためにCheck Codeボタンをクリッ クしてください。Cブロックの図をカスタマイズするためにEdit Imageボタンをクリックしてください。

例として、2入力、3出力のCブロックを考えます。入出力のポート数が決まったらCブロックの素子画像 は以下のようになります。

ノードは上から下へ番号が振られます。

Cコードでは、PSIMからCブロックへ値を受け渡すためin配列が使われ、Cブロックから値を返すためout 配列が使われます。この例では、最初の入力[0]が左上に位置し、最初の出力[0]が右上に位置します。Cブロ ックと外部DLLブロックの違いは、Cブロックは簡単に使えるものの、カスタムコードをデバッグすること ができないという点にあります。外部DLLブロックでは、デバッグするためにVisual Studio上でブレイクポ イントをセットすることやトレース/ステップを行うことが可能です。
6.4.6 シンプルC ブロック (Simplified C Block)

シンプル C ブロックは C ブロックの簡易版です。C ブロックが変数定義領域などを持っているのに対し、シンプル C ブロックは C コードだけを含んでおり、C コードはタイムステップごとに呼んで実行されます。

シンプル C ブロックダイアログウィンドウのインターフェースは以下の通りです

		Input/output
	Simplified C Block Help	ports
	Block Name: SSCB1 Input: 1 Output: 1	Enable FP Header Files
	Edit Image Fixed Point Header Files Fixed Point Settings	FP Settings
Variables ——	Variables Insert GetPsimValue Check Code	
Insert G.P.V.	Input x1 Output y1	
Area for custom code	<pre>1 2 //ENTER YOUR CODE HERE 3 // y1 = 2 * sin(x1); 5</pre>	
	K	

Number of Input/Output Ports セクションでは、入出力ポートの数を定義します。ポートの数を変えると、 シンプル C ブロックのイメージはそれに従って変わります。

以下の変数をコードで使用することが可能です

t	PSIM から渡される時間
delt	PSIM から渡される刻み
x1, x2,	入力 1, 2,
y1, y2,	出力 1, 2,

[Enable Fixed Point Header Files]が選択されている場合、[Fixed Point Settings]のクリックにより、C ブロックの入力と出力の固定小数点データタイプを定義することができます。

[Variables]ボタンのクリックにより、主回路から C ブロックに渡すことができる変数を定義することができます。変数には定数や数式を用いることができます。

例

k1 = 15.2

k1 = Freq/sqrt(2)

ここで Freq はパラメータファイルで定義されているものとする。

[Insert GetPsimValue]ボタンのクリックにより、他の場所で定義された変数を取得し、Cコードでそれ を使用することができます。この関数の使用法は、Cブロックと同じです。

Cブロックとは異なり、シンプルCブロックは自動コード生成に使用することができます。

6.4.7 外部 DLL ブロック (External DLL Blocks)

外部 DLL(Dynamic Link Library)ブロックを使うことでユーザ自作の C/C++のプログラムを追加すること ができます。それには Microsoft C/C++を使い、プログラムを DLL としてコンパイルし、PSIM にリンクし て使います。これらのブロックはパワー回路または制御回路として使うことができます。

DLL ブロックは PSIM から入力値を受け取り、計算処理後、出力を PSIM に返します。PSIM は DLL を シミュレーションタイムステップごとに呼び出します。ただし、DLL ブロックの入力端子が離散素子(ゼロ 次ホールド、単位時間遅れ、離散積分器、離散微分器、z-領域伝達関数およびデジタルフィルタのいずれか) に接続されているときは、DLL は離散的なサンプル時刻にのみ呼び出されます。

DLL ブロックでは Simple DLL ブロックと General DLL ブロックの二つタイプが提供されます。Simple DLL ブロックは入出力端子の本数が固定されていて、ブロックで設定する必要があるのは DLL ファイル名 のみです。これに対し、General DLL ではユーザが入出力端子の本数を自由に設定することが可能で、ま たユーザが設定した任意の追加パラメータを使用することが可能です。また General DLL ブロックはシン ボルをカスタマイズすることも可能です。

一般的には Simple DLL ブロックが簡単なプログラミングで利用できて便利です。

1/3/6本の入出力をもつ Simple DLL ブロックのモデルと仕様は下のようになります。

シンボル

仕様

パラメータ	機能
ファイル名	DLL ファイルのファイル名

ドットの付いた端子には最初の入力(in[0])を加えます。入出力端子の順番は上から下です。

General DLL ブロックのモデルと仕様は下のようになります。

シンボル(2入力、3出力ブロック)

仕様	
パラメータ	機能
ファイル名	DLL ファイル名
Input Data File	DLL が読む入力データファイル名(オプション)
入力ノード数	入力端子の数(オプション)
出力ノード数	出力端子の数(オプション)
入力ノード	入力端子のリスト(オプション)
出力ノード	出力端子のリスト(オプション)
パラメータi	PSIM から DLL に渡すパラメータ <i>i</i> (オプション)
イメージ編集 (button)	DLL ブロックモデルを編集、作成します。
ファイル表示 (button)	入力データファイルの内容を示します。(オプション)
ファイル読込 (button)	入力データファイルが修正されたとき、このボタンを押すとデータファイ ルを再読み込みします。(オプション)

ドットの付いた端子には最初の入力(in[0])を加えます。入出力端子の順番は上から下です。

デフォルトの設定ダイアログでは、ユーザは入出力の数を定義します。入出力の数と端子名、パラメー タの数とパラメータ名は、全て DLL の中で定義できます。General DLL ブロックは強力なカスタマイズが 可能な反面、C 言語および Windows プログラミングに関する高度な知識を要求されます。必要性に合わせ て通常の DLL ブロックと使い分けることをお勧めします。本機能に関する詳細な解説は、PSIM をインス トールしたフォルダの doc フォルダにある「Help General DLL Block.pdf (英文)」およびサンプルファイル をご覧ください。

DLL ファイルの名前は任意です。DLL ファイルは優先度の高い順に、二つの場所のいずれかに配置する ことができます。PSIM ディレクトリもしくは、DLL ファイルを使用した回路図ファイルと同じディレク トリです。

注意:DLL ファイルが複数の DLL ブロックで使用される場合において、グローバルもしくは静的変数が宣言され DLL コード内で使用された際には、これらグローバル・静的変数は同じ値になり、全ての DLL ブロックで共用されます。この動作が意図したものでない場合、DLL の計算が不正確になりかねません。この様な場合には、コード内でグローバル及び静的変数を使用しないでください。

簡易な DLL ブロックと一般な DLL ブロックの使用例は PSIM ディレクトリ内の examples\custom DLL サブフォルダに配置されています。

6.4.8 組み込みソフトウェアブロック (Embedded Software Block)

組み込みソフトウェアブロックは、特別な外部 DLL ブロックです。

これは、マイクロコントローラや DSP といった組み込みソフトウェアデバイスをモデリング することを、念頭に置いています。

11	44 ا
1	- 78
	- 17

パラメータ	機能			
ファイル名	機能とブロックのインターフェースを定義した DLL ファイル名			
入出力ノード数	入出力端子の合計数			
組み込みソフトウェアブロックは、通常の外部 DLL ブロックと似ています。				

しかし、接続ノードが入力または出力として予め定義されている通常の外部 DLL ブロックと異なり、

組み込みソフトウェアブロックは、ノードのタイプを必要に応じてプログラミングすることができます。 また、変数の状態の変化の瞬間といった追加の情報も、PSIM とやり取りすることが可能です。 組み込みソフトウェアブロックは制御回路であり、制御回路に対してのみ使用することができます。 組み込みソフトウェアブロックについての詳しい説明は PSIM インストールフォルダの Doc フォルダに あります「Help Embedded Software Block.pdf(英文)」を参照して下さい。

6.5 IC モデル (IC Models)

PSIM ではいくつかの PWM IC とドライバ IC モデルがあります。

6.5.1 PWM IC

PWM IC モデルは次のようなモデルがあります。

シンボル

UC3823A/B	UC3825A/B	UC3842/3843	UC3844/3845	UC3846	UC3854
1 INV VREF 16	1 INV VERE 16	1 COMP VPFF 8	1 COMP VPPP	1 TLIM STDN 16	1 GND GDRV 16
- NI VCC -	• NI VCC •	VFB VCC	• VFB VCC •	- VREF VIN-	- PKLM VCC -
- FA OUTB	- FA OUTB-			CS- BOUT	CAO CT
CIK VC	o CI'K ∧C o	- Rt/Ct GND-	• Rt/Ct GND =	- CS+ VC-	
- RT PGND -	RT PGND	4 10,00 000 5	4 10,00 010 5	NT GND	MOUT RSET
CT OUTA	CT OUTA			TNV AOUT	
- RAMP GND -	- RAMP GND -			- COMP SYNC -	VAO ENA
• SS ILIM →	⊶ SS ILIM →			CT RT	- VRMS VREF -
8 9	8 00 000 9			8 9	8 1112 1121 9
UC3854A/B	UC3872	UCC3806	UCC3817/3818	UCC3895	
GND GDRV	BOUT GND	ILIM STDN	GND DRV	EAN EAP	
- PKLM VCC -•	⊶ AOUT PGND →	⊶ VREF VIN →	⊶ PKLM VCC →	⊶ EAO SS →	
⊶ CAO CT →	• VC COUT •	⊶ CS- BOUT →	• CAO CT →	⊶ RAMP OUTA →	
⊶IS SS⊸	◦ COMP ENB ●	◦ CS+ VC ⊸	• CAI SS →	⊶ REF OUTB →	
⊶ MOUT RSET-•	⊶ SS VCC →	• NI GND -•	• MOUT RT •	⊶ GND PGND →	
⊶ IAC VS →	• INV VREF •	• INV AOUT •	• IAC VS •	⊶ SYNC VCC →	
• VAO ENA •	CT ZD 8	 COMP SYNC 	• VAO OVP •	◦ CT OUTC →	
8 VRMS VREF 9		8 CT RT 9	8 VFF VREF 9	• RT OUTD •	
				• DLAB CS •	
				DLCD ADS	

仕様	
パラメータ	機能
モデルレベル	すべての IC モデルには、2 つのレベルがあります。
	レベル 1: PWM ゲーティング出力は制御信号で、論理 H(1)と L(0)です。
	レベル 2: PWM ゲーティング出力は、3 ステートで直接駆動することがで
	きる電力信号です。
起動閾値電圧	起動閾値電圧(V)(一部の IC 用)
シャットダウン閾値電圧	シャットダウン閾値電圧(V)(一部の IC 用)
PWM IC 一覧	
UC3823A/B,	高周波スイッチモード電源を制御する高速 PWM コントローラ。PWM コ
UC3825A/B	ントローラの UC3823A と UC3823B、また UC3825A と UC3825B ファミ
	リは標準的な UC3823 と UC3825 ファミリの改良版となります。
UC3842/3843, UC3844/3845	オフラインまたは DC-DC コンバータ用の固定周波数電流モード PWM コ
	ントローラ。制御デバイスの UC3842/3/4/5 ファミリは、オフラインまた
	は DC-DC コンバータ用の固定周波数電流モード制御方式に必要な機能を
	提供します。
UC3846	オフラインまたは DC-DC コンバータ用の固定周波数電流モード PWM コ
	ントローラ。制御 IC の UC3846 ファミリは、固定周波数電流モード制御
	方式に必要な機能を提供します。
UC3854, UC3854A/B	能動型力率補正された高効率プリレギュレータ。UC3854A/BはUC3854の
	強化バージョンとピン互換性があります。U3854 は能動型力率補正プリレ
	ギュレータを実現する必要な機能を提供します。
UC3872	共振ランプ安定コントローラ。UC3872 は、冷陰極蛍光灯、ネオン、及び
	他のガス放電ランプを駆動するために最適化された共振ランプ安定コント
	ローラです。
UCC3806	低消費電力、デュアル出力、電流モードPWMコントローラ。人気のUC3846
	シリーズと同じブロック図及びピンアウトで、装置内に使用されるバイア
	ス電流を大幅に低減しつつ、 UCC3806 ライン機能は、スイッチング周波
	数能力を増加させました。
UCC3817/3818	BiCMOS の平均電流制御モードによる力率プリレギュレータ。
	UCC3817/18 ファミリは、能動型力率補正プリレギュレータに必要なすべ
	ての機能を提供します。このコントローラは、AC 入力電圧の形に一致する
	ように AC 電流波形を整形して、力率を1に近くにします。
UCC3895	フルブリッジ電力段のための BiCMOS 高度な移相 PWM コントローラ。
	UCC3895 は、一方のハーフブリッジのスイッチングを他方に 対して位相
	をシフトすることで制御を実現する、フルブリッジ 型の移相 PWM コント
	ローラです。ゼロ電圧スイッチングと組み合わせて一定周波数の PWM を
	行い、高周波数で高効率を得ることができます。

6.5.2 ドライバ IC (Driver IC)

PSIM はスイッチング電源デバイスのドライバモデルを次のように実装しています。

シンボル

1	IR21834	14 1	IRS21867	8 1 • •	TC4423A NC NC	8 1	TC4425A	8 1 C - •	TC4427А NC NC	8
°	LIN VE	-• •	HIN HO		INA OUTA	-o o-	INA OUT	A 0-	INA OUTA	-0
o	VSS HC	-• •	LIN Vs		GND VDD	-0 0	GND VD	D	GND VDD	-0
0	DT VS	-0 0	COM LO	5 4	INB OUTB	5 4	INB OUT	B 0 0-	INB OUTB	5
0	COM	- '								
0	LO	-		1	TC4424A	- 8 1	TC4426A	8 1	TC4428A	8
°	Vcc	8		•	NC N		NC N	C	NC NC	
				0	INA OUT	A - 0	INA OUT	A •	INA OUTA	
				•	GND VDI)	GND VD	D	GND VDD	-0
				• 4	INB OUT	B 6 4	INB OUT	B 6 6	INB OUTB	5

ドライバ IC 一覧

IR21834	ハイサイド/ローサイド基準電圧出力チャンネルに依存した、高電
	圧、高速パワーMOSFET や IGBT 用のハーフブリッジドライバ。
IRS21867	ハイサイド/ローサイド基準電圧出力チャンネルに依存しない、高電
	圧、高速パワーMOSFET や IGBT 用のハイサイド/ローサイドドライ
	バ。
TC4423A, TC4424A, TC4425A	3A のデュアル出力の高速パワーMOSFET ドライバ。
	TC4423A: 両側反転出力
	TC4424A: 両側非反転出力
	TC4425A: 片側反転出力、片側非反転出力
TC4426A, TC4427A, TC4428A	1.5A のデュアル出力の高速パワーMOSFET ドライバ
	TC4426A: 両側反転出力
	TC4427A: 両側非反転出力
	TC4428A: 片側反転出力、片側非反転出力

6.5.3 555 タイマ (555 Timer)

555 タイマは、正確な時間遅延や振動を発生させるための非常に安定したデバイスです。 加えて、必要 に応じてトリガまたはリセットされるための端子が設けられています。 時間遅延モードでは、時間は正確 に外付けの抵抗とコンデンサにより制御されます。

PSIM モデルで、555 タイマの OUT 信号は制御信号ノードです。

シンボル

55	5
1 c— GND	VCC -
∽ TRIG	DISC
o— OUT	THRS
∽_ REST 4	VCTL 5

6.6 初期值 (Initial Values)

ノード電圧初期値

この素子を利用してパワー系、制御系回路の初期ノード電圧の定義ができます。シミュレーションが開 始するとすぐに、この値は保持されなくなります。

221110		
	V J	
仕様		_
パラメータ	機 能	

6.7 パラメータファイル (Parameter File)

ノード電圧の初期値

パラメータファイル素子(.FILE)は素子のパラメータやリミッタの設定を保存するファイルの名前を指定 します。たとえば、抵抗の抵抗値を変数 R1 と指定して、パラメータファイルの中で実際の値を記述するこ とができます。また、パラメータファイルはそれ自体を、計算ツールとして使用することもできます。 シンボル

パラメータファイルはユーザが作成するテキストファイルです。パラメータファイルのフォーマットは 以下のとおりです。

```
//
               //から行末までは、コメントとして扱われます。
    k1=12.3
               // 変数 k1 の値を定義。
    k1=a+b*c
               // 数式で k1 を定義。
     (global)k1=12.3 // k1 をグローバル変数として定義(SimCoder で使用)。
               // 10の累乗をサポート。L1=3e-3を表しています。
    L1=3m
               // C1=100e-6 を表しています。"F"は、無視されます。
     C1=100uF
 Version9.1と比較して、以下のフォーマットはサポートされなくなりました。
     LIMIT var1 Vlow Vupper
                       // これは、"if...else if..." 文に置き換えてください。
     %
                       コメントとして%は、サポートされません。
                       コメントは ダブルスラッシュ(//)で始めてください。
                       %は、剰余演算として使用されます。
     var1 value (例えば "R1 2.5")
                      // 変数を定義するためには、等号を使用する必要があります。
 "(global)"定義は SimCoder で自動コード生成を行う際にのみ使用します。この使い方に関しては
SimCoderのマニュアルをご参照ください。PSIM でのシミュレーションの際には、この定義は無視されま
す。よって、パラメータを"(global)Kp=1.2"と定義した場合、シミュレーション時は"Kp=1.2"と同様に扱わ
れます。
 また、条件文とエラー/ワーニングメッセージ機能が以下のようにサポートされました。
```

```
if (k1 > 10)
               {
                  a = 10
                  b = 1
               }
              else if (k1 \le 20)
               ł
                  a = 20
                  b = 2
              }
              else
               {
                  Error {"Error: The value of k1 is out of the range. k1 = \%f'', k1}
              if (k1 == 20)
               ł
                  Warning {"Warning: The value of k1 is equal to %.0f", k1)
               3
 条件文 "if…else if…else…" が記述されると、標準的な C の文法が適用されます。(ただし、各ステートメ
ントの最後にセミコロン(;)は、付きません。)
 パラメータファイルにおいて、サポートされる演算子と数学関数は、以下の通りです。
      + - * / % (modulo) ^(to the power of) = == != > >= < <= ! && ||
      sin(r), cos(r), tan(r), asin(x), acos(x), atan(x), atan2(x,y), sinh(x), cosh(x), tanh(x), pow(x,y) (x to the power of y), sqrt(x), exp(x), ln(x) (or log(x)), log10(x), abs(x), sign(x)
      if {...} else if {...} else {...}
                                        // インライン if 文("if"ではなく "iif" となります。)
      iif (comparison, value1, value2)
      error ("Error text %f, %f", var1, var2)
                                       // 5個の変数までサポートされます。
      warning ("Warning text %f, %f", var1, var2) // 5個の変数までサポートされます。
 全ての三角関数の入出力は、ラジアンで扱われます。また、エラーやワーニングのレポート関数は、以
下のとおり変数の数値表記をコントロールできます。
  Error {"Error message"}
  Error {"Error message %.nf", k1}
                                     // k1の値を表示します。
                                     // nは小数点の後の数字の個数を指定します。
                                     // 例えば、k1=12.34の場合、%.1fと指定すると
                                     // 12.3と表示されます。
  Warning {"Warning message"}
  Warning {"Warning message %.nf", k1}
                                     // k1の値を表示します。
                                     // nは小数点の後の数字の個数を指定します。
                                     // 例えば、k1=12.34の場合、%.1fと指定すると
                                     // 12.3 と表示されます。
 エラー機能はシミュレーションを中断させます。一方、ワーニング機能はシミュレーションを継続しま
す。パラメータファイルの変数の値を表示するためには、Edit >> Show Values を実行してください。下図
では、左側にパラメータファイルを、右側に変数とその値を示しています。
```


"Show Values"機能は、計算のチェックするためにとても便利な機能です。

<u>回路図内のパラメータファイル</u>

回路図内でパラメータファイルの要素が使用されている場合、パラメータファイルの階層は、回路図と 同じ次元になります。高次元の回路図内のパラメータファイルで定義された変数は、低次元の回路図で使 用できますが、その逆はできません。また、同じ次元の他の回路図内で使用することはできません。

例えば、メイン回路に"main_param.txt"というパラメータファイルがあるとします。そしてメイン回路に は S1 と S2 というサブ回路があり、それぞれパラメータファイル "sub1_param.txt"と

"sub2_param.txt"に対応しているとします。この場合、"main_param.txt"で定義されている変数は、 "sub1_param.txt"と"sub2_param.txt" でも、S1とS2 でも使用できます。しかし、"sub1_param.txt"もしく は"sub2_param.txt"で使用されている変数は、より高次元であるメイン回路や"main_param.txt"で使用する ことはできません。

同様に、サブ回路 S1 と S2 が同次元のため、"sub1_param.txt"で定義された変数は、S2 と"sub2_param.txt" で使用することはできません。その逆もまた、同様です。

PSIM がパラメータファイルを含んだ回路を保存する際、パラメータファイルの内容を保存すると同時 に相対パスと絶対パスの両方の情報を保存します。PSIM がパラメータファイルを含んだ回路を読み込む 際、以下の順序でパラメータファイルを検索します。

1.相対パス(回路が保存されているフォルダとの相対位置)

2.絶対パス

3.ローカルパス(回路が保存されているフォルダ)

1~3 内にパラメータファイルが存在しない場合は、回路が保存されているフォルダに自動的に作成されます。

<u>パラメータツール</u>

変数の値を表示し、条件文を処理するための機能を使用すると、パラメータファイルの素子は、それ自体で非常に便利な計算ツールになります。使いやすくするため、回路図なしでパラメータファイルを開けるように、この機能は提供されています。この機能を使うには Utilities >> Parameter Tool を実行してください。

6.8 周波数特性解析(AC Analysis)

6.8.1 AC スイープ (AC Sweep)

周波数特性解析により主回路もしくは制御ループの周波数応答を求めることができます。PSIM を使った周波数特性解析の特徴は、回路がスイッチ素子を含む場合も、平均値による解析に頼ることなく、実際のスイッチ動作を忠実に模擬できることです。

通常のモデルでは、周波数特性を短時間で実行することができます。

PSIM で周波数特性解析を行う際の手順を以下に示します。

- 交流スイープの励起電源に使う正弦波電源(VSIN)を同定する。
- 出力を観測したい位置にスイープ用のプローブ(ACSWEEP_OUT)を置く。閉ループの制御応答を 観測するには、ノード間プローブ(ACSWEEP OUT2)を使います。
- ACSWEEP素子を回路に置き、パラメータを設定する。

- PSIM のシミュレーションを実行する。

以下に交流スィープ用素子のシンボルと仕様を示します。

シンボル

AC Sweep Probe	AC Sweep Probe (loop)	AC Sweep
(ac)	⊶ac)-⊷	AC Sweep

仕様

エ ホ	
パラメータ	機能
開始周波数	交流スイープの開始周波数(Hz)
終了周波数	交流スイープの終了周波数(Hz)
データ点数	データ数
データ点フラグ	データ点のフラグ。 Flag =0 のとき、周波数は LOG10 のスケールで等間隔に変化します。 Flag =1 のとき、周波数は線形のスケールで等間隔に変化します。
励起電源	スイープ対象の励起電源の名称
開始振幅	励起電源の開始周波数における振幅大きさ
終了振幅	励起電源の終了周波数における振幅大きさ
追加データ点周波数	追加データ点の周波数。周波数特性がある区間で急激に変化する場合は、この区間にデータ点を追加することにより、より詳細な解像度が得られます。 ※使用しない場合は空白にしてください。0を入れると計算が終わらなくなる可能性があります。

周波数特性解析の原理は交流励起信号を回路に抽入して、出力の観測点で同じ周波数の信号を取り出す ことにあります。周波数特性解析の結果を正確にするには、励起電源の振幅を適切に設定する必要があり ます。応答が線形領域にとどまるように振幅は小さく設定することが必要です。一方、出力の精度が数値 誤差の影響を受けないように、振幅は充分大きくする必要があります。

ー般に、物理系は周波数の低い領域では減衰が低く、周波数の高い領域では高い傾向があります。した がって、励起電源は開始周波数では振幅が小さく、終了周波数では大きな設定とするのが良いでしょう。 場合によって、周波数特性解析の終了後に次の警告メッセージが表示されることがあります。

Warning: The program did not reach the steady state after 60 cycles. See File "message.doc" for more details.

この警告メッセージは、交流スイープを開始して 60 サイクル後になっても定常状態を検出できなかった ときに表示されます。この問題を解決するには、回路の制動を増す(たとえば抵抗を追加する)か、励起電源 の振幅を調整する、あるいはシミュレーションのタイムステップを短くする、などの対策が考えられます。 "message.txt"というファイルには、この現象が起こった周波数、また相対誤差などといった情報が書き込 まれています。相対誤差はデータ点が定常状態からどれだけ離れているかを示しています。

例:並列フィルタのインピーダンス

以下に示す回路は基本波周波数 60Hz に対して 5 次と 7 次の高調波フィルタを構成しています。励起電源として電流を抽入し電圧を測定することで、このフィルタのインピーダンス特性を得ることができます。 図の左に示す周波数特性解析の波形はあきらかに 300Hz と 420Hz に谷があることを示しています。

例:コンバータの開ループ応答

以下に示す回路は直流チョッパ回路で、変調率信号に周波数特性解析のための正弦波電圧を加算し、出 カ電圧を測定しています。右に示すのは周波数特性解析の結果で、変調率入力に対する出力電圧の周波数 応答を示しています。

例: 閉ループ回路の一巡伝達関数

周波数特性解析はまた、閉ループ回路の応答を調べるのに使うことができます。以下に示す回路は平均 電流制御付きのコンバータ回路です。電流フィードバック回路に励起電源を抽入し、ノード間プローブ (ACSWEEP_OUT2)により観測することにより、このループの一巡伝達関数を直接得ることができます。 こうして得られた一巡伝達関数から、ユーザはさらにバンド幅と位相角余裕を求めることができます。

交流スイープ用のプローブはドットの付いた側が励起電源の抽入点よりも後に接続されているところに ご注意ください。

例:スイッチモード電源の伝達関数

PWM 用 IC を制御に使ったスイッチモード電源の伝達関数も同様にして求めることができます。以下の 回路ではコンバータの制御に Unitrode UC3842 を使っています。励起電源はフィードバック回路の中でオ ペアンプの出力の前に接続しています。

6.8.2 AC スイープ複数正弦波 (AC Sweep Multi-Sine)

AC スイープ複数正弦波ブロックは AC スイープ ブロックと同じ機能です。従来の AC スイープに比べ、 このブロックの優位な点は、低周波 1 サイクル内において複数の周波数をシミュレーションできることで す。

シンボル

|--|--|

仕様

パラメータ	機能
開始周波数	交流スイープの開始周波数(Hz)
終了周波数	交流スイープの終了周波数(Hz)
データ点数	データ数
データ点フラグ	データ点のフラグ Flag =0 のとき、周波数は LOG10 のスケールで等間隔に変化します。 Flag =1 のとき、周波数は線形のスケールで等間隔に変化します。
励起電源	スイープ対象の励起電源の名称
ピーク振幅	開始周波数における励起電源の振幅ピーク値
サイクル数	AC スイープ計算に使用する開始周波数サイクル数。
安定状態時間	安定状態になる推定時間。ユーザは安定状態になるまでの近しい時間を推定 するか、単一の時間シミュレーションを実行し、値を決めます。

6.9 パラメータのスイープ (Parameter Sweep)

パラメータに関してスイープ解析をおこなうことができます。

パラメータスイープ用素子のシンボルと仕様を以下に示します。

シンボル

Para	~
Swee	p

仕様

	+## 44
77779	1茂 月已
名前	スイープするパラメータの名称
開始	パラメータスイープの開始値
終了	パラメータスイープの終了値
増分	パラメータの刻み幅
有効	チェックを入れると、そのパラメータのスイープが有効になります

たとえば、抵抗器の抵抗を Ro とします。この抵抗器を 2 Ohm から 10 Ohm まで 2 Ohm ごとにスイー プさせ、**有効**のチェックボックスにチェックすると以下のような設定となります。

名前	Ro
開始	2
終了	10
増分	2

パラメータスイープは2つのグラフをプロットします。1つは出力 対 時間、もう一方はシミュレーションの出力最後の値 対 スイープさせたパラメータです。

例えば、V1 と V2 という 2 つの出力をだす回路で、抵抗値 Ro をスイープするとします。総シミュレー ション時間は 0.1 秒です。シミュレーション後、Simview で 2 つのグラフがプロットされます。1 つは V1 と V2 対 時間です。もう一方は V1 と V2 対 Ro です。2 つめのグラフの V1 と V2 はシミュレーション時間 最後 0.1 秒のときの値です。

第7章 電圧源・電流源

PSIMでは、いくつかの電圧源・電流源が用意されています。電流源の方向は次のように定義します。電流は高電位のノードから出て、外部回路を流れ、低電位のノードに戻ります。電流源はタイプにかかわらずパワー回路でのみ使用できます。

7.1 定数 (Constant)

定数素子で、ユーザは定数を定義できます。これは、接地した電圧源として作用します。 シンボル

|--|

仕様

パラ	メータ	機能
値		定数の値

7.2 時間 (Time)

時間要素は区分線形電圧源の特殊な場合です。これは接地された電圧源として扱われ、シミュレーション時刻(sec)と同じ値を出力します。

シンボル

7.3 グラウンド (Ground)

PSIM ライブラリには3種類のグラウンドがあります。それぞれ異なる形状ですが、電気的には接続されています。これら形状の異なるグラウンドによって、ユーザは回路図上の機能ごとにグラウンドを分けて編集できます。

シンボル

Ground	Ground (1)	Ground (2)	
<u><u> </u></u>	Ŷ	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	

7.4 電圧源と電流源

7.4.1 直流電源 (DC Source)

直流源は出力一定です。また、Grounded DC の一方の端子は接地されています。

シンボル

仕様

パラメータ	機能
出力値	電源の出力値
直列抵抗	直列抵抗 (Ω)(DC および DC(battery)のみ)
直列インダクタンス	直列インダクタンス (H)(DC および DC(battery)のみ)

直列抵抗と直列インダクタンスは電源の出力インピーダンスを表しています。

7.4.2 正弦波電源(Sinusoidal Source)

正弦波電源は以下のように定義されています。

$$v_o = V_m \cdot \sin(2\pi \cdot f \cdot t + \theta) + V_{offset}$$

下の図に正弦波電源の仕様を示します。

仕様

パラメータ	機能
最大値	正弦波の最大値 Vm
周波数	周波数 <i>f</i> (Hz)
初期位相角	初期位相角 θ(度)
直流オフセット	直流オフセット Voffset
直列抵抗	直列抵抗 (Ω)(Voltage のみ)
直列インダクタンス	直列インダクタンス (H) (Voltage のみ)
開始時刻	開始時刻。この時刻以前の電源は0になります。

三相回路の構成に便利なように対称三相Y結線正弦波電圧源が用意されています。ドットのついた相が a相です。 シンボル

仕様

- 14/	
パラメータ	機能
V(線間実効値)	線間の実効値 (V)
周波数	周波数 <i>f</i> (Hz)
相初期位相角	a 相の初期位相角 θ(度)
直列抵抗	直列抵抗 (Ω)
直列インダクタンス	直列インダクタンス (H)

7.4.3 方形波電源(Square-Wave Source)

方形波電圧源および電流源は peak-to-peakの振幅、周波数、デューティ比および DC オフセットにより 指定できます。通電周期は1周期に対する高電位が出力される時間の比で定義されます。 シンボル

立ち上がり時間(SPICE)	信号が Low から High に立ち上がる秒数(SPICE モードでのみ使用します)		
立ち下がり時間(SPICE)	信号が High から Low に立ち下がる秒数(SPICE モードでのみ使用します)		

位相遅れ θ が正数のときは、波形が時間軸に沿って右側にシフトされます。

7.4.4 三角波電源/のこぎり波電源 (Triangular/Sawtooth Sources)

三角波電圧源および電流源はピーク間振幅、周波数、デューティ比および DC オフセットにより指定で きます。デューティ比は1周期に対する立ち上がり時間の比で定義されます。

ノノハル(二円似电塚)			
	Voltage	Current	
		$\stackrel{\uparrow \uparrow}{\underset{\downarrow}{\overset{\downarrow}}}$	

仕様(三角波電源)

パラメータ	機能
最大振幅	ピーク間の振幅 Vpp
周波数	周波数 <i>f</i> (Hz)
デューティ比	デューティ比D
直流オフセット	直流オフセット Voffset
開始時刻	開始時刻。この時刻以前の電源は0になります。
位相遅れ	波形の位相遅れ θ(度)

下の図に三角波電源の仕様を示します。

位相遅れθが正数のときは、波形が時間軸に沿って右側にシフトされます。 のこぎり波電源は、デューティサイクル1で、dc offset と位相遅れが0の三角波電源の特別なケースで

あり、一つのグランドノードを持っています。

下の図にのこぎり波電源の仕様を示します。

シンボル(のこぎり波電源)

4	
	Sawtooth-wave
	, I I I I I I I I I I I I I I I I I I I
	<u>–</u>

仕様(のこぎり波電源)

パラメータ	機能
最大振幅	ピークの振幅
周波数	周波数 (Hz)
立ち下がり時間(SPICE)	信号が High から Low に立ち下がる秒数(SPICE モードでのみ使用します)

7.4.5 ステップ電源 (Step Sources)

ステップ電圧源および電流源は指定された時間に出力がある設定値から別の設定値に変化します。2種類のステップ電源があります。1つは0からある値まで変化するタイプ(Step)で、もう1つはある値から別の値へ変化するタイプ(Step(2-level))です。

シンボル

	Voltage	Current	
	Î Î		
仕様			
Sten type の提会			

パラメータ	機 能
変化後の値	 ステップ変化の後の出力値 Vstep
変化時間	ステップ変化を発生させる時刻 Tstep
遷移時間(SPICE)	信号が High から Low に立ち下がる秒数(SPICE モードでのみ使用します)
Step (2-level) type の場合	
パラメータ	機能
変化前の値	 ステップ変化の前の値 Vstep1

変化後の値	ステップ変化の後の値 Vstep2
変化時間	ステップ変化を発生させる時刻 Tstep
遷移時間	V _{step1} から V _{step2} までの遷移時間 <i>T_{transition}</i>

下の図にステップ電圧源の仕様を示します。

SPICE モードでは遷移時間を0秒に設定することは出来ません。必ず0秒以外の値を入れる必要が有ります。

7.4.6 区分線形電源(Piecewise Linear Source)

区分線形電源は多くの線分で波形を構成します。線分は接点の数、電圧・電流値、およびそのときの時刻(sec)で指定できます。値や時刻は独立して、またはペアで入力することができます。 シンボル

仕様

値と時刻を独立で定義するモデル(Piecewise linear)の場合

パラメータ	機 能
周波数	 周波数 <i>f</i> (Hz)
接点の数	接点の数
值 V1,, Vn 值 I1,, In	各接点における電圧または電流値
時刻 T ₁ ,, T _n	各接点の時刻(sec)
直と時刻をペアで定義する	モデル(Piecewise linear (in pair))の場合
パラメータ	機能
周波数	周波数 <i>f</i> (Hz)
時刻 値 (+、)、)	

|時刻, 値 (t1,v1) ... |時刻, 値 (t1,l1) ... 各接点の時刻と値

時刻と値のペアは必ずカッコで囲んでください。カッコ内の時刻と値はカンマで区切るか(例:1.2m,5.5)、 スペースで区切るか(例:1.2m 5.5)、あるいはその両方を同時に使用できます(例:1.2m, 5.5)。

例:区分線形電源の設定

以下に非周期的区分線形電源の例を示します。区分数は3で、図に示すとおり4つの接点により定義することができます。

	周波数	0.		
	接点数 n	4		
	值 V ₁ ,, V _n	1. 1. 3. 3.		
	時刻 T ₁ ,, T _n	0. 0.1 0.2 0.3,		
	ise linear (in nair)の提会け	- 以下の上うに指定		

Piecewise linear (in pair)の場合は、以下のように指定します。

周波数	0.				
時刻, 值 (t1,v1)	(0., 1) (0.1, 1) (0.2, 3) (0.3, 3)				

7.4.7 ランダム電源 (Random Source)

ランダム電圧源(VRAND)と電流源(IRAND)の出力はシミュレーションの各時刻においてランダムに決まります。ランダム電圧源は以下のように定義されています。

$$v_o = V_m \cdot n + V_{offset}$$

ここで V_m は電源のピーク間振幅、n は 0 と 1 のあいだのランダムな数、V_{offset} は dc オフセットです。 シンボル

仕様

パラメータ	機能			
最大振幅	ピーク間の振幅			
直流オフセット	直流オフセット			
継続時間(SPICE)	一定の電圧・電流を継続する秒数(SPICE モードでのみ使用します)			

7.4.8 数式関数電源 (Math Function Source)

数式関数電源はユーザが任意の関数を数式で指定できる電源です。 シンボル

I	VMATH

仕様

パラメータ	機能
数式	関数の数式表現
開始時刻	電源の動作開始時刻

数式のなかで T または t は時刻を示します。たとえば、正弦波関数の電源を指定するには、数式表現は sin(2*3.14159*60*t+2.09) などとなります。

7.4.9 制御付き電圧源・電流源 (Voltage/Current-Controlled Sources)

PSIM では次の6種類の制御付き電源が使用可能です。

電圧制御電圧源 (Voltage controlled voltage source)

電流制御電圧源 (Current controlled voltage source)

電圧制御電流源 (Voltage controlled current source)

電流制御電流源 (Current controlled current source)

可変ゲイン電圧制御電圧源 (Variable-gain voltage controlled voltage source)

可変ゲイン電圧制御電流源 (Variable-gain voltage controlled current source)

電流制御の場合、RLC ブランチの電流を制御電流とする必要があります。また、電流源の場合は、制御 電圧または電流は独立の電源から取ることはできません。

制御付き電圧・電流源はパワー回路でのみ使用可能です。

シンボル

Voltage-controlled Current-controlled		Current-controlled (flowing through)	Variable-gain voltage-controlled
* ~	Ĩ	€\$	$v_{m1} \times + \kappa v_{m2}$
Voltage-controlled $\overset{+}{\sim}$	Current-controlled	Current-controlled (flowing through)	Variable-gain voltage-controlled $v_{m1} \times _{k} v_{m2}$

仕様

パラメータ			機	能		
ゲイン	電源のゲイン					
雨に判知の雨酒にわいて雨にはている!		ドムころへのノ	181-	ウムシナナ	+	雨海川知の雨洒る

電圧制御の電源において電圧は正(+)のノードから負(-)のノードに向かいます。一方、電流制御の電源で は制御端子を RLC ブランチに直列に接続し、電流の方向はシンボル図の矢印に示すようにします。もう一 組の電流制御の電源においては、制御電流は一方の端子から入り、他方の端子から出ます。制御電流を検 出するために 10μΩの抵抗を使っています。

ゲインが連続で制御可能な電圧・電流源は Input1 を乗算記号の側に、また、Input2 は k の文字がある側 に加えます。制御付き電圧・電流源では、出力は制御入力の電圧・電流をゲイン倍したものになります。一 方、可変ゲイン電圧・電流源では出力は以下の式で決まります。

$$v_{0} = (\mathbf{k} \cdot \mathbf{v}_{in2}) \cdot \mathbf{v}_{in1}$$
$$i_{0} = (\mathbf{k} \cdot \mathbf{v}_{in2}) \cdot \mathbf{v}_{in1}$$

次節に述べる非線形電源と可変ゲイン電源の違いは、非線形電源の出力は現在時刻の Vin1 および Vin2 を 使って計算し、各反復で更新されるという点です。一方、可変ゲイン電源では隣り合った時刻での Vin2 の 変化は小さいと見積もって、前の時刻での Vin2 を現在時刻の計算に使います。この仮定は Vin2 が Vin1 に較 べてかなりゆっくりと変化し、Vin2 の変化に較べてタイムステップが充分小さい場合に成り立ちます。可変 ゲイン電源は非線形電源では収束の問題があるような場合に使えます。 例

下の図に電流制御電圧源の回路を示します。

左の回路では、電流制御電圧源をインダクタ電流 is によって制御しています。このように電流制御電圧 源を使うことにより、電流値を電圧値に変換することができます。

7.4.10 非線形電圧制御電源 (Nonlinear Voltage-Controlled Sources)

非線形の電圧制御電源(Nonlinear Voltage-Controlled Source)は、入力の乗算・除算・平方根のいずれかを出力します。次に出力の式による定義を示します。

非線形(乗算)出力
$$v_0 = k \cdot v_{in1} \cdot v_{in2}$$
 または $i_0 = k \cdot v_{in1} \cdot v_{in2}$

非線形(除算)出力
$$v_0 = k \cdot \frac{v_{in1}}{v_{in2}}$$
 または $i_0 = k \cdot \frac{v_{in1}}{v_{in2}}$
非線形(平方根)出力 $v_0 = k \cdot \sqrt{v_{in1}}$ または $i_o = k \cdot \sqrt{v_{in1}}$

非線形(電力)出力 $v_0 = sign(v_{in}) \cdot k \cdot (k_1 \cdot v_{in})^{k_2}$

非線形電源(以下の図で Power)では、sign(vin)は、vinが正のときは1、負のときは-1となります。 非線形電圧制御電源はパワー回路でのみ使用できます。

シンボル

仕様

Power を除くすべての電源

パラメータ	機能
ゲイン	電源のゲイン <i>k</i>
Power	
パラメータ	機能
ゲイン	電源のゲイン <i>k</i>
係数 k1	係数 <i>k</i> 1
係数 k ₂	係数 <i>k</i> 2

非線形(除算)電源では、Input1 は除算記号の側に加えます。

第8章 エラー及び全般に関する注意

8.1 全般に関する注意

8.1.1 タイムステップ

PSIMではシミュレーションのタイムステップは固定です。正確な結果を得るためには、タイムステップ を適切に選ぶ必要があります。適切なタイムステップは、たとえば、スイッチ切り換え期間、パルスや方 形波の幅、変化の速い過渡現象の継続時間などにより決まります。タイムステップはこれらの現象のうち 最も応答時間が短いものに較べてさらに1桁以上小さくなるように設定してください。

8.1.2 論理回路の伝搬遅れ

PSIM 内部の論理回路は理想回路で伝搬遅れがありません。伝搬遅れを動作に含む論理回路をシミュレーションするには、PSIM では時間遅れ(TDELAY)ブロックと呼ばれる関数ブロックを使うことで伝搬遅れを実現できます。

この例として、2ビット・カウンタ回路を以下に示します。

上の回路では、初期値 Q0 と Q1 はいずれも零と仮定しています。クロックの立ち上がりにおいて、Q0 は 0 から 1 に状態変化します。伝搬遅れなしとすると、Q1 は Q0 と同時に 1 に切り替わってしまいます。 これを防ぐために、右の回路では 1 タイムステップの時間遅れを持つ時間遅れ要素を Q0 と次のフリップ フロップの入力(J)の間に追加しています。

8.1.3 パワー回路と制御回路のインターフェース

PSIM ではパワー回路は個別の回路素子で表現され、制御回路は伝達関数ブロック線図で表現されてい ます。パワー回路の要素、たとえば、RLC ブランチ、スイッチ、変圧器、相互結合インダクタ、電流源、 接地されていない電圧源、そしてすべての制御付き電源は、制御回路では使うことができません。同様に、 制御回路の要素、たとえば、論理ゲート、PI 制御器などの関数ブロックはパワー回路では使えません。

パワー回路と制御回路の入力を直接つなげた場合は、PSIM は電圧センサを自動的に挿入します。同様 に、制御回路の出力を直接、パワー回路につなげた場合、制御・パワー変換ブロック(CTOP)が自動的に挿 入されます。これらの様子を下の図に示します。

PSIMでは、パワー回路と制御回路は別々に解かれることにご注意ください。パワー回路と制御回路の間には、1タイムステップ分の時間遅れがあります。

8.1.4 FFT による高調波解析

FFT を使って高調波解析をする場合、次の条件が満たされることを確認してください。 - 波形が定常状態に達したこと;

- FFT 解析に指定したデータの範囲が基本波の周期の整数倍であること。

たとえば、60Hz の波形では、データの長さは 16.67msec か、その倍数に設定する必要があります。こ れを守らないと FFT の結果が正しくありません。データ範囲の設定は、SIMVIEW で「X Axis」をクリック し、「Auto-scale」のチェックボックスをクリアした上で、From と To に適切な値を設定することで行う ことができます。FFT 解析は画面に表示されている範囲に対してのみ実行されます。

FFT 解析結果は離散的であることに注意してください。FFT 解析結果は、データの時間間隔 Δt と解析す るデータの長さ T_{length} に依存します(Δt はシミュレーションタイムステップの print step 倍です)。FFT 解 析の基本波周波数は $1/T_{length}$ となり、 $\Delta f=1/T_{length}$ 毎に解析結果が得られます。また、最大周波数は f_{max}=1/(2^{*}\Delta t)となります。

例えば、1kHzの方形波を 10 μ s 刻みで 1ms 表示させて FFT 解析した場合、T_{length}=1ms, Δ t=10 μ s となります。従って、 Δ f=1/T_{length}=1kHz となり、解析結果の最高周波数は f_{max}=1/(2* Δ t)=50kHz となります。

8.2 デバッグ

シミュレーションで問題が発生する例について、対策方法を説明します。

問題

インダクタ電流とキャパシタ電圧のシミュレーション結果が急に変化する(不連続がある)。

対策

この障害はインダクタの電流経路を開いたか、キャパシタを含むループ回路を短絡したことが原因で す。スイッチのゲート信号を調べてください。必要ならば、パルスを重ねたり、間隔を開いたりして開 路や短絡を防いでください。

インダクタの初期電流が指定されているとき、スイッチの初期状態はそのような電流が流れるように 閉状態としてください。そうでなければ、電流は零から始まることになります。

問題

波形が正しくない、または正確でない。あるいは、分解能が悪い。

対策

この原因は2つあります。ひとつは刻み時間の設定です。PSIM はシミュレーション全体で一定のタ イムステップを使うので、タイムステップは充分に小さく設定するようにしてください。おおよその目 安として、タイムステップはスイッチ周期の数十分の1にしてください。

もうひとつの原因は波形の表示のしかたです。表示刻み Iprint が大きすぎないように設定してください。すべてのデータ点を表示するには Iprint = 1 とします。

8.3 エラーおよび警告メッセージ

次にエラーおよび警告メッセージについて解説します。

- E-1 Input format errors occurred in the simulation. (入力データの形式が正しくありません)
 - このエラーは次のいずれかの原因によります。
 - データ設定が正しくないかまたは不足している
 - 整数および文字列の入力が正しくない。

PSIM ライブラリが変更されていないか、またはお使いの PSIM が最新バージョンであることを確か めてください。

回路接続情報ファイルでは、文字列はアポストロフィで囲みます(例: 'test')。また、整数の変数に整 数を指定していることを確認してください。整数のパラメータに実数を入れると(たとえば、3の代わり に 3.)このエラーメッセージが出ます。

 E-2 Error message: The node of an element is floating. (端子が接続されていません)
 このメッセージは PSIM で作成した回路の接続が悪いときに表示されます。2つの端子を結線するときは、端子が素子に接続されているか確かめてください。

E-3 Error message: No. of an element exceeds the limit. (要素の数が多すぎます)

このメッセージはある要素の全体数がプログラムの上限を越えた時に出力されます。この問題を解決 するには、PSIM プログラムの配列を大きくして再コンパイルする必要があります。弊社にご相談くだ さい。

W-1 "Warning!! The program failed to converge after 10 iterations when determining switch position. The computation continues with the following switch positions: ..." (10 回の収束計算でもスイッチの状態が決まりませんでしたが、スイッチの状態は以下のように決めてシミュレーションを続行します)

このメッセージはプログラムがスイッチ状態を決める過程で収束しなかったときに表示されます。シ ミュレーションは 10回目の計算を終えた時点のスイッチ状態を使って続行します。シミュレーション 結果は正確ではないかもしれません。結果を解析するときには充分ご注意ください。

この問題はいろいろな場合に生じる可能性があります。次の対策により、原因を特定し修正することができます。

- 回路の接続が正しいか確認してください。

- スイッチのゲート信号を調べてください。

- スイッチと電圧源に直列に小さな抵抗またはインダクタを接続してください。

W-2 "Warning!!! The program did not reach the steady state after 60cycles when performing the ac sweep."

(周波数解析を行いましたが、60回反復しても計算が収束しませんでした。)

このメッセージは周波数解析を行った際に、計算が 60 回反復しても収束しない問題が起きた場合に 現れます。この問題の原因として、システムが、特定の周波数で著しく減衰を引き起こすものである か、もしくは信号振幅が小さすぎるか、が考えられます。

以下の方法で問題を解決して下さい。

- 問題が起きた周波数の信号源で時間領域のシミュレーションを走らせ、時間領域の波形が発振していないかどうかを観て下さい。

- 信号レベルを上げるために入力の電圧源の振幅を大きくして下さい。

-または適切な時間区切りになるように時間ステップを減らして下さい。

PSIM Version 11.0 User's Guide

発行: Myway プラス株式会社 〒220-0022 横浜市西区花咲町 6-145 横浜花咲ビル TEL: 045-548-8836 FAX: 045-548-8832

ホームページ: <u>https://www.myway.co.jp</u> Eメール: <u>sales@myway.co.jp</u>